Nonexistence for complete Kahler-Einstein metrics on some noncompact manifolds

被引:1
作者
Gao, Peng [1 ]
Yau, Shing-Tung [1 ]
Zhou, Wubin [2 ]
机构
[1] Harvard Univ, Dept Math, Cambridge, MA 02138 USA
[2] Tongji Univ, Sch Math Sci, Shanghai 200092, Peoples R China
基金
中国博士后科学基金; 美国国家科学基金会;
关键词
RICCI CURVATURE; EQUATION;
D O I
10.1007/s00208-016-1486-y
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let M be a compact Kahler manifold and N be a subvariety with codimension greater than or equal to 2. We show that there are no complete Kahler-Einstein metrics on . As an application, let E be an exceptional divisor of M. Then cannot admit any complete Kahler-Einstein metric if blow-down of E is a complex variety with only canonical or terminal singularities. A similar result is shown for pairs.
引用
收藏
页码:1271 / 1282
页数:12
相关论文
共 22 条
  • [1] [Anonymous], 1990, J AM MATH SOC
  • [2] [Anonymous], 2013, Cambridge Tracts in Mathematics
  • [3] [Anonymous], 1987, Advanced Series in Mathematical Physics
  • [4] Kahler-Einstein Metrics on Stable Varieties and log Canonical Pairs
    Berman, Robert J.
    Guenancia, Henri
    [J]. GEOMETRIC AND FUNCTIONAL ANALYSIS, 2014, 24 (06) : 1683 - 1730
  • [5] Monge-Ampere equations in big cohomology classes
    Boucksom, Sebastien
    Eyssidieux, Philippe
    Guedj, Vincent
    Zeriahi, Ahmed
    [J]. ACTA MATHEMATICA, 2010, 205 (02) : 199 - 262
  • [6] ON THE EXISTENCE OF A COMPLETE KAHLER METRIC ON NON-COMPACT COMPLEX-MANIFOLDS AND THE REGULARITY OF FEFFERMANS EQUATION
    CHENG, SY
    YAU, ST
    [J]. COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1980, 33 (04) : 507 - 544
  • [7] On complete constant scalar curvature Kahler metrics with Poincare-Mok-Yau asymptotic property
    Fu, Jixiang
    Yau, Shing-Tung
    Zhou, Wubin
    [J]. COMMUNICATIONS IN ANALYSIS AND GEOMETRY, 2016, 24 (03) : 521 - 557
  • [8] Complete cscK Metrics on the Local Models of the Conifold Transition
    Fu, Jixiang
    Yau, Shing-Tung
    Zhou, Wubin
    [J]. COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2015, 335 (03) : 1215 - 1233
  • [9] Differential forms on log canonical spaces
    Greb, Daniel
    Kebekus, Stefan
    Kovacs, Sandor J.
    Peternell, Thomas
    [J]. PUBLICATIONS MATHEMATIQUES DE L IHES, 2011, (114): : 87 - 169
  • [10] KAHLER-EINSTEIN METRICS WITH CONE SINGULARITIES ON KLT PAIRS
    Guenancia, Henri
    [J]. INTERNATIONAL JOURNAL OF MATHEMATICS, 2013, 24 (05)