"Zylon" Aerogels

被引:18
作者
Chen, Meiling [1 ]
Wang, Daolin [1 ]
Yue, Mingli [1 ]
Lin, Xiankun [1 ]
Yang, Ming [1 ]
He, Qiang [1 ]
机构
[1] Harbin Inst Technol, Key Lab Microsyst & Micronanostruct Mfg, 2 Yikuang St, Harbin 150080, Heilongjiang, Peoples R China
关键词
aerogels; nanofibers; poly(p-phenylene benzobisoxazole); thermal and mechanical properties; Zylon; CARBON NANOTUBE AEROGELS; POLYIMIDE AEROGELS; MECHANICAL-PROPERTIES; POLYAMIDE AEROGELS; SILICA AEROGELS; HYBRID AEROGELS; GRAPHENE OXIDE; CELLULOSE; NANOFIBERS; COMPOSITE;
D O I
10.1002/mame.201800229
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Ultralight materials with challenging combinations of properties such as high mechanical stiffness at low density, high thermal and environmental stabilities, are hard to achieve. Here, poly(p-phenylene benzobisoxazole) (PBO) nanofibers derived from "super" fibers (Zylon) are assembled into a robust 3D porous structure, forming aerogels with integrated performance surpassing previously existing polymeric aerogels. "Zylon" aerogel has a specific compressive modulus of 72 M Pag(-1)cm(3) at a density as low as 32 mg cm(-3), low thermal conductivity (0.045 W m(-1) K-1) at 500 degrees C, and an intrinsic moisture resistance. PBO nanofibers also empower "Zylon" aerogels with high thermal stability up to 692 degrees C, a near-zero thermal expansion coefficient, and a superior fire-retardant capability. These attractive multiparameter properties make "Zylon" aerogels highly competitive lightweight construction structures. The use of polymeric assembly units with intrinsic demanding characteristics represents an essential pathway toward rationalizing the design of high-performance aerogels.
引用
收藏
页数:7
相关论文
共 62 条
[1]   High performance fibers based on rigid and flexible polymers [J].
Afshari, Mehdi ;
Sikkema, Doetze J. ;
Lee, Katelyn ;
Bogle, Mary .
POLYMER REVIEWS, 2008, 48 (02) :230-274
[2]  
[Anonymous], ANGEW CHEM, DOI DOI 10.1002/ANGE.201206554
[3]   Spongy Graphene as a Highly Efficient and Recyclable Sorbent for Oils and Organic Solvents [J].
Bi, Hengchang ;
Xie, Xiao ;
Yin, Kuibo ;
Zhou, Yilong ;
Wan, Shu ;
He, Longbing ;
Xu, Feng ;
Banhart, Florian ;
Sun, Litao ;
Ruoff, Rodney S. .
ADVANCED FUNCTIONAL MATERIALS, 2012, 22 (21) :4421-4425
[4]  
Cai J., 2012, Angewandte Chemie, V124, P2118, DOI DOI 10.1002/ANGE.201105730
[5]   Cellulose aerogels from aqueous alkali hydroxide-urea solution [J].
Cai, Jie ;
Kimura, Satoshi ;
Wada, Masahisa ;
Kuga, Shigenori ;
Zhang, Lina .
CHEMSUSCHEM, 2008, 1 (1-2) :149-154
[6]   Rigid-rod polymeric fibers [J].
Chae, HG ;
Kumar, S .
JOURNAL OF APPLIED POLYMER SCIENCE, 2006, 100 (01) :791-802
[7]   Preparation and Flammability of Poly(vinyl alcohol) Composite Aerogels [J].
Chen, Hong-Bing ;
Wang, Yu-Zhong ;
Schiraldi, David A. .
ACS APPLIED MATERIALS & INTERFACES, 2014, 6 (09) :6790-6796
[8]   Poly(p-phenylenebenzobisoxazole) nanofiber layered composite films with high thermomechanical performance [J].
Chen, Meiling ;
Mo, Yuncheng ;
Li, Zesheng ;
Lin, Xiankun ;
He, Qiang .
EUROPEAN POLYMER JOURNAL, 2016, 84 :622-630
[9]   Macroscopic Multifunctional Graphene-Based Hydrogels and Aerogels by a Metal Ion Induced Self-Assembly Process [J].
Cong, Huai-Ping ;
Ren, Xiao-Chen ;
Wang, Ping ;
Yu, Shu-Hong .
ACS NANO, 2012, 6 (03) :2693-2703
[10]   Silica-cellulose hybrid aerogels for thermal and acoustic insulation. applications [J].
Feng, Jingduo ;
Le, Duyen ;
Nguyen, Son T. ;
Nien, Victor Tan Chin ;
Jewell, Daniel ;
Duong, Hai M. .
COLLOIDS AND SURFACES A-PHYSICOCHEMICAL AND ENGINEERING ASPECTS, 2016, 506 :298-305