Geodesic interpolation inequalities on Heisenberg groups

被引:2
作者
Balogh, Zoltan M. [1 ]
Kristaly, Alexandru [2 ,3 ]
Sipos, Kinga [1 ]
机构
[1] Univ Bern, Math Inst, Sidlerstr 5, CH-3012 Bern, Switzerland
[2] Obuda Univ, Inst Appl Math, Budapest, Hungary
[3] Univ Babes Bolyai, Dept Econ, Cluj Napoca 400591, Romania
基金
瑞士国家科学基金会;
关键词
METRIC-MEASURE-SPACES; GEOMETRY;
D O I
10.1016/j.crma.2016.07.001
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this Note, we present geodesic versions of the Borell-Brascamp-Lieb, Brunn-Minkowski and entropy inequalities on the Heisenberg group H-n. Our arguments use the Riemannian approximation of Hncombined with optimal mass-transportation techniques. (C) 2016 Academie des sciences. Published by Elsevier Masson SAS. All rights reserved.
引用
收藏
页码:916 / 919
页数:4
相关论文
共 12 条
[1]   Optimal mass transportation in the Heisenberg group [J].
Ambrosio, L ;
Rigot, S .
JOURNAL OF FUNCTIONAL ANALYSIS, 2004, 208 (02) :261-301
[2]  
[Anonymous], 2003, TOPICS OPTIMAL TRANS
[3]  
Balogh Z.M., 2016, ARXIV160506839V2
[4]   A Riemannian interpolation inequality a la Borell, Brascamp and Lieb [J].
Cordero-Erausquin, D ;
McCann, RJ ;
Schmuckenschläger, M .
INVENTIONES MATHEMATICAE, 2001, 146 (02) :219-257
[5]   Absolute continuity of Wasserstein geodesics in the Heisenberg group [J].
Figalli, A. ;
Juillet, N. .
JOURNAL OF FUNCTIONAL ANALYSIS, 2008, 255 (01) :133-141
[6]   MASS TRANSPORTATION ON SUB-RIEMANNIAN MANIFOLDS [J].
Figalli, Alessio ;
Rifford, Ludovic .
GEOMETRIC AND FUNCTIONAL ANALYSIS, 2010, 20 (01) :124-159
[7]  
Juillet N., 2009, INT MATH RES NOT, V13
[8]   Ricci curvature for metric-measure spaces via optimal transport [J].
Lott, John ;
Villani, Cedric .
ANNALS OF MATHEMATICS, 2009, 169 (03) :903-991
[9]   Polar factorization of maps on Riemannian manifolds [J].
McCann, RJ .
GEOMETRIC AND FUNCTIONAL ANALYSIS, 2001, 11 (03) :589-608
[10]  
Sturm KT, 2006, ACTA MATH-DJURSHOLM, V196, P65, DOI 10.1007/s11511-006-0002-8