Wavelet domain image denoising by thresholding and Wiener filtering

被引:123
作者
Kazubek, M [1 ]
机构
[1] Warsaw Univ Technol, Inst Radioelect, PL-00665 Warsaw, Poland
关键词
image denoising; wavelets; Wiener filtering;
D O I
10.1109/LSP.2003.818225
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
The approximate analysis of the errors occuring in the empirical Wiener filtering is presented. We demonstrate that denoising performance of the Wiener filtering may be increased by preprocessing images with a thresholding operation.
引用
收藏
页码:324 / 326
页数:3
相关论文
共 7 条
[1]  
Bucheit J.B., WAVELAB TOOLKIT
[2]   Adaptive wavelet thresholding for image denoising and compression [J].
Chang, SG ;
Yu, B ;
Vetterli, M .
IEEE TRANSACTIONS ON IMAGE PROCESSING, 2000, 9 (09) :1532-1546
[3]   IDEAL SPATIAL ADAPTATION BY WAVELET SHRINKAGE [J].
DONOHO, DL ;
JOHNSTONE, IM .
BIOMETRIKA, 1994, 81 (03) :425-455
[4]   Image denoising using a local contextual hidden Markov model in the wavelet domain [J].
Fan, GL ;
Xia, XG .
IEEE SIGNAL PROCESSING LETTERS, 2001, 8 (05) :125-128
[5]  
LI X, 2000, P IEEE INT C IM PROC
[6]   Low-complexity image denoising based on statistical modeling of wavelet coefficients [J].
Mihçak, MK ;
Kozintsev, I ;
Ramchandran, K ;
Moulin, P .
IEEE SIGNAL PROCESSING LETTERS, 1999, 6 (12) :300-303
[7]  
Portilla Javier, 2001, P 8 INT C IM PROC TH