Nearly constant loss in crystalline oxide-ion conductor Gd2Zr2O7

被引:6
作者
Diaz-Guillen, M. R. [1 ]
Frechero, M. A. [1 ]
Diaz-Guillen, J. A. [2 ]
Fuentes, A. F. [3 ]
Leon, C. [1 ]
机构
[1] Univ Complutense Madrid, Fac Fis, Dept Fis Aplicada 3, GFMC, E-28040 Madrid, Spain
[2] Inst Tecnol Saltillo, Div Estudios Posgrad & Invest, Saltillo 25280, Coahuila, Mexico
[3] CINVESTAV, Unidad Saltillo, Saltillo 25000, Coahuila, Mexico
关键词
Ionic conductivity; Dielectric loss; Dielectric relaxation; ELECTRICAL RELAXATION; DIELECTRIC LOSS; AC CONDUCTIVITY; GLASSES; DYNAMICS; BEHAVIOR; TEMPERATURE; DISPERSION; SYSTEMS; ORIGIN;
D O I
10.1007/s10832-014-9907-3
中图分类号
TQ174 [陶瓷工业]; TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
We present a study of the nearly constant loss regime in the oxide-ion conductor Gd2Zr2O7 by using Impedance Spectroscopy measurements. At enough low temperature, between 173 and 253 K, the dielectric loss is found to be almost temperature and frequency independent within the whole experimental frequency range (10 Hz - 1 MHz). However, a symmetric and very broad relaxation peak is clearly resolved in the loss spectra. This peak shows a thermally activated peak frequency with activation energy E (tau) = 0.29 +/- 0.02 eV, and its origin is discussed in terms of previously proposed models for the nearly constant loss.
引用
收藏
页码:15 / 19
页数:5
相关论文
共 50 条
  • [21] Chemical durability of Gd2Zr2O7 transparent ceramics under different pH conditions
    Yu, Lei
    Zhang, Kuibao
    Liu, Kui
    Luo, Baozhu
    CERAMICS INTERNATIONAL, 2023, 49 (18) : 30755 - 30762
  • [22] Thermal Durability of YSZ/Nanostructured Gd2Zr2O7 TBC Undergoing Thermal Cycling
    Bahamirian, M.
    Hadavi, S. M. M.
    Farvizi, M.
    Keyvani, A.
    Rahimipour, M. R.
    OXIDATION OF METALS, 2019, 92 (5-6): : 401 - 421
  • [23] Fabrication and phase transition of Gd2Zr2O7 ceramics immobilized various simulated radionuclides
    Fan, Long
    Shu, Xiaoyan
    Ding, Yi
    Duan, Tao
    Song, Mianxin
    Lu, Xirui
    JOURNAL OF NUCLEAR MATERIALS, 2015, 456 : 467 - 470
  • [24] Electrical Properties of Li+-Substituted Solid Solutions Based on Gd2Zr2O7
    Anokhina, I. A.
    Animitsa, I. E.
    Voronin, V., I
    Vykhodets, V. B.
    Kurennykh, T. E.
    Buzina, A. F.
    Kazakova, V. N.
    Nokhrin, S. S.
    Zaikov, Yu P.
    RUSSIAN JOURNAL OF PHYSICAL CHEMISTRY A, 2021, 95 (12) : 2426 - 2431
  • [25] Thermal behaviour of multilayer and functionally-graded YSZ/Gd2Zr2O7 coatings
    Carpio, P.
    Salvador, M. D.
    Borrell, A.
    Sanchez, E.
    CERAMICS INTERNATIONAL, 2017, 43 (05) : 4048 - 4054
  • [26] Characterization and luminescent properties of Eu3+ doped Gd2Zr2O7 nanopowders
    Rabasovic, M. S.
    Sevic, D.
    Krizan, J.
    Terzic, M.
    Mozina, J.
    Marinkovic, B. P.
    Savic-Sevic, S.
    Mitric, M.
    Rabasovic, M. D.
    Romcevic, N.
    JOURNAL OF ALLOYS AND COMPOUNDS, 2015, 622 : 292 - 295
  • [27] Unsatisfactory CMAS resistance of Gd2Zr2O7 2 Zr 2 O 7 thermal barrier coatings and the solution strategy based on laser surface modification
    Ma, Wenjuan
    Yan, Kai
    Zhu, Yijian
    Su, Jiaxin
    Zhan, Chao
    Yang, Jun
    Liu, Hongli
    Guo, Lei
    CERAMICS INTERNATIONAL, 2024, 50 (18) : 31859 - 31868
  • [28] A comparison between novel Gd2Zr2O7and Gd2Zr2O7/YSZ thermal barrier coatings fabricated by plasma spray-physical vapor deposition
    Zhu, Ren-Bo
    Zou, Jian-Peng
    Mao, Jie
    Deng, Zi-Qian
    Zhang, Xiao-Feng
    Deng, Chun-Ming
    Liu, Min
    RARE METALS, 2021, 40 (08) : 2244 - 2253
  • [29] Response of molten silicate infiltrated Gd2Zr2O7 thermal barrier coatings to temperature gradients
    Jackson, R. Wesley
    Zaleski, Elisa M.
    Hazel, Brian T.
    Begley, Matthew R.
    Levi, Carlos G.
    ACTA MATERIALIA, 2017, 132 : 538 - 549
  • [30] Immobilization of simulated waste into pure Gd2Zr2O7 pyrochlore without space occupancy design
    Wu, Jianjun
    Luo, Fen
    Shu, Xiaoyan
    Chen, Shunzhang
    Wei, Guilin
    Li, Bingsheng
    Xie, Yi
    Yuan, Wenqing
    Yi, Facheng
    Lu, Xirui
    JOURNAL OF THE AMERICAN CERAMIC SOCIETY, 2020, 103 (08) : 4700 - 4712