MOCVD Growth and Structural Properties of ZnS Nanowires: A Case Study of Polytypism

被引:2
作者
Kumar, Sumit [1 ]
Fossard, Frederic [2 ]
Amiri, Gaelle [1 ]
Chauveau, Jean-Michel [1 ]
Sallet, Vincent [1 ]
机构
[1] Univ Paris Saclay, Univ Versailles St Quentin En Yvelines, CNRS, Grp Etude Matiere Condensee GEMAC, 45 Ave Etats Unis, F-78035 Versailles, France
[2] Univ Paris Saclay, Off Natl Etudes & Rech Aerospatiales, CNRS, Lab Etude Microstruct LEM, 29 Ave Div Leclerc, F-92322 Chatillon, France
关键词
ZnS nanowires; MOCVD; polytypes; transmission electron microscopy; SUPERLATTICES; DIFFUSION; NANOBELTS; ENERGY;
D O I
10.3390/nano12142323
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Controlling the morphology, orientation, and crystal phase of semiconductor nanowires is crucial for their future applications in nanodevices. In this work, zinc sulfide (ZnS) nanowires have been grown by metalorganic chemical vapor deposition (MOCVD), using gold or gold-gallium alloys as catalyst. At first, basic studies on MOCVD growth regimes (mass-transport, zinc- or sulfur- rich conditions) have been carried out for ZnS thin films. Subsequently, the growth of ZnS nanowires was investigated, as a function of key parameters such as substrate temperature, S/Zn ratio, physical state and composition of the catalyst droplet, and supersaturation. A detailed analysis of the structural properties by transmission electron microscopy (TEM) is given. Depending on the growth conditions, a variety of polytypes is observed: zinc-blende (3C), wurtzite (2H) as well as an uncommon 15R crystal phase. It is demonstrated that twinning superlattices, i.e., 3C structures with periodic twin defects, can be achieved by increasing the Ga concentration of the catalyst. These experimental results are discussed in the light of growth mechanisms reported for semiconductor nanowires. Hence, in this work, the control of ZnS nanowire structural properties appears as a case study for the better understanding of polytypism in semiconductor 1D nanostructures.
引用
收藏
页数:20
相关论文
共 54 条
  • [1] Semiconductor nanowires: optics and optoelectronics
    Agarwal, R.
    Lieber, C. M.
    [J]. APPLIED PHYSICS A-MATERIALS SCIENCE & PROCESSING, 2006, 85 (03): : 209 - 215
  • [2] AKIZUKI M, 1981, AM MINERAL, V66, P1006
  • [3] Twinning superlattices in indium phosphide nanowires
    Algra, Rienk E.
    Verheijen, Marcel A.
    Borgstrom, Magnus T.
    Feiner, Lou-Fe
    Immink, George
    van Enckevort, Willem J. P.
    Vlieg, Elias
    Bakkers, Erik P. A. M.
    [J]. NATURE, 2008, 456 (7220) : 369 - 372
  • [4] Synthesis and Applications of ZnO Nanowire: A Review
    Bagga, Shobi
    Akhtar, Jamil
    Mishra, Sanjeev
    [J]. EMERGING TECHNOLOGIES: MICRO TO NANO (ETMN-2017), 2018, 1989
  • [5] Epitaxial growth of ZnSe and ZnSe/CdSe nanowires on ZnSe
    Bellet-Amalric, E.
    Elouneg-Jamroz, M.
    Bougerol, C.
    Den Hertog, M.
    Genuist, Y.
    Bounouar, S.
    Poizat, J. P.
    Kheng, K.
    Andre, R.
    Tatarenko, S.
    [J]. PHYSICA STATUS SOLIDI C: CURRENT TOPICS IN SOLID STATE PHYSICS, VOL 7 NO 6, 2010, 7 (06): : 1526 - 1529
  • [6] Catalyst-nanostructure interaction and growth of ZnS nanobelts
    Borchers, C
    Stichtenoth, D
    Müller, S
    Schwen, D
    Ronning, C
    [J]. NANOTECHNOLOGY, 2006, 17 (04) : 1067 - 1071
  • [7] Twinning Superlattice Formation in GaAs Nanowires
    Burgess, Tim
    Breuer, Steffen
    Caroff, Philippe
    Wong-Leung, Jennifer
    Gao, Qiang
    Tan, Hark Hoe
    Jagadish, Chennupati
    [J]. ACS NANO, 2013, 7 (09) : 8105 - 8114
  • [8] Caroff P, 2009, NAT NANOTECHNOL, V4, P50, DOI [10.1038/nnano.2008.359, 10.1038/NNANO.2008.359]
  • [9] INTER-LAYER INTERACTIONS AND THE ORIGIN OF SIC POLYTYPES
    CHENG, C
    NEEDS, RJ
    HEINE, V
    [J]. JOURNAL OF PHYSICS C-SOLID STATE PHYSICS, 1988, 21 (06): : 1049 - 1063
  • [10] III-V nanowire growth mechanism: V/III ratio and temperature effects
    Dayeh, Shadi A.
    Yu, Edward T.
    Wang, Deli
    [J]. NANO LETTERS, 2007, 7 (08) : 2486 - 2490