Mathematical Modelling of Material Transfer to High-Density Lipoprotein (HDL) upon Triglyceride Lipolysis by Lipoprotein Lipase: Relevance to Cardioprotective Role of HDL

被引:4
作者
Schekatolina, Svetlana [1 ]
Lahovska, Viktoriia [1 ]
Bekshaev, Aleksandr [2 ]
Kontush, Sergey [2 ]
Le Goff, Wilfried [3 ]
Kontush, Anatol [3 ]
机构
[1] Odessa Natl Technol Univ, UA-65000 Odessa, Ukraine
[2] Mechnikov Odessa Natl Univ, Phys Res Inst, UA-65082 Odessa, Ukraine
[3] Sorbonne Univ, Inst Natl Sante & Rech Med INSERM, Unite Rech les Malad Cardiovasc, Metabolisme & Nutr,ICAN, F-75013 Paris, France
关键词
mathematical modelling; lipolysis; triglyceride-rich lipoproteins; high-density lipoprotein; free cholesterol; lipoprotein lipase; triglycerides; intestine; atherosclerosis; cardiovascular disease; ESTER TRANSFER PROTEIN; ELEVATED OXIDATIVE STRESS; APOLIPOPROTEIN-A-I; CAUSE-SPECIFIC MORTALITY; SERUM HIGH-DENSITY; CHOLESTEROL EXCHANGE; CONSENSUS STATEMENT; METABOLIC SYNDROME; PARTICLES; MECHANISM;
D O I
10.3390/metabo12070623
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
High-density lipoprotein (HDL) contributes to lipolysis of triglyceride-rich lipoprotein (TGRL) by lipoprotein lipase (LPL) via acquirement of surface lipids, including free cholesterol (FC), released upon lipolysis. According to the reverse remnant-cholesterol transport (RRT) hypothesis recently developed by us, acquirement of FC by HDL is reduced at both low and extremely high HDL concentrations, potentially underlying the U-shaped relationship between HDL-cholesterol and cardiovascular disease. Mechanisms underlying impaired FC transfer however remain indeterminate. We developed a mathematical model of material transfer to HDL upon TGRL lipolysis by LPL. Consistent with experimental observations, mathematical modelling showed that surface components of TGRL, including FC, were accumulated in HDL upon lipolysis. The modelling successfully reproduced major features of cholesterol accumulation in HDL observed experimentally, notably saturation of this process over time and appearance of a maximum as a function of HDL concentration. The calculations suggested that the both phenomena resulted from competitive fluxes of FC through the HDL pool, including primarily those driven by FC concentration gradient between TGRL and HDL on the one hand and mediated by lecithin-cholesterol acyltransferase (LCAT) and cholesteryl ester transfer protein (CETP) on the other hand. These findings provide novel opportunities to revisit our view of HDL in the framework of RRT.
引用
收藏
页数:24
相关论文
共 55 条
[1]  
ATHA DH, 1981, J BIOL CHEM, V256, P2108
[2]   Thermogenic adipocytes promote HDL turnover and reverse cholesterol transport [J].
Bartelt, Alexander ;
John, Clara ;
Schaltenberg, Nicola ;
Berbee, Jimmy F. P. ;
Worthmann, Anna ;
Cherradi, M. Lisa ;
Schlein, Christian ;
Piepenburg, Julia ;
Boon, Mariette R. ;
Rinninger, Franz ;
Heine, Markus ;
Toedter, Klaus ;
Niemeier, Andreas ;
Nilsson, Stefan K. ;
Fischer, Markus ;
Wijers, Sander L. ;
Lichtenbelt, Wouter van Marken ;
Scheja, Ludger ;
Rensen, Patrick C. N. ;
Heeren, Joerg .
NATURE COMMUNICATIONS, 2017, 8
[3]  
BISGAIER CL, 1993, J LIPID RES, V34, P1625
[4]   Low-density lipoproteins cause atherosclerotic cardiovascular disease: pathophysiological, genetic, and therapeutic insights: a consensus statement from the European Atherosclerosis Society Consensus Panel [J].
Boren, Jan ;
Chapman, M. John ;
Krauss, Ronald M. ;
Packard, Chris J. ;
Bentzon, Jacob F. ;
Binder, Christoph J. ;
Daemen, Mat J. ;
Demer, Linda L. ;
Hegele, Robert A. ;
Nicholls, Stephen J. ;
Nordestgaard, Brge G. ;
Watts, Gerald F. ;
Bruckert, Eric ;
Fazio, Sergio ;
Ference, Brian A. ;
Graham, Ian ;
Horton, Jay D. ;
Landmesser, Ulf ;
Laufs, Ulrich ;
Masana, Luis ;
Pasterkamp, Gerard ;
Raal, Frederick J. ;
Ray, Kausik K. ;
Schunkert, Heribert ;
Taskinen, Marja-Riitta ;
van de Sluis, Bart ;
Wiklund, Olov ;
Tokgozoglu, Lale ;
Catapano, Alberico L. ;
Ginsberg, Henry N. .
EUROPEAN HEART JOURNAL, 2020, 41 (24) :2313-+
[5]   Biological activities of HDL subpopulations and their relevance to cardiovascular disease [J].
Camont, Laurent ;
Chapman, M. John ;
Kontush, Anatol .
TRENDS IN MOLECULAR MEDICINE, 2011, 17 (10) :594-603
[6]   High-Density Lipoprotein (HDL) Particle Subpopulations in Heterozygous Cholesteryl Ester Transfer Protein (CETP) Deficiency: Maintenance of Antioxidative Activity [J].
Chantepie, Sandrine ;
Bochem, Andrea E. ;
Chapman, M. John ;
Hovingh, G. Kees ;
Kontush, Anatol .
PLOS ONE, 2012, 7 (11)
[7]   Cholesteryl ester transfer protein: at the heart of the action of lipid-modulating therapy with statins, fibrates, niacin, and cholesteryl ester transfer protein inhibitors [J].
Chapman, M. John ;
Le Goff, Wilfried ;
Guerin, Maryse ;
Kontush, Anatol .
EUROPEAN HEART JOURNAL, 2010, 31 (02) :149-164
[8]  
CHAPMAN MJ, 1981, J LIPID RES, V22, P339
[9]   High-Density Lipoproteins: Biology, Epidemiology, and Clinical Management [J].
Choi, Hong Y. ;
Hafiane, Anouar ;
Schwertani, Adel ;
Genest, Jacques .
CANADIAN JOURNAL OF CARDIOLOGY, 2017, 33 (03) :325-333
[10]   LIPOSOME-LIKE PARTICLES ISOLATED FROM HUMAN ATHEROSCLEROTIC PLAQUES ARE STRUCTURALLY AND COMPOSITIONALLY SIMILAR TO SURFACE REMNANTS OF TRIGLYCERIDE-RICH LIPOPROTEINS [J].
CHUNG, BH ;
TALLIS, G ;
YALAMOORI, V ;
ANANTHARAMAIAH, GM ;
SEGREST, JP .
ARTERIOSCLEROSIS AND THROMBOSIS, 1994, 14 (04) :622-635