Topological Phases in InAs1-xSbx: From Novel Topological Semimetal to Majorana Wire

被引:92
作者
Winkler, Georg W. [1 ,2 ]
Wu, QuanSheng [1 ,2 ]
Troyer, Matthias [1 ,2 ]
Krogstrup, Peter [3 ,4 ]
Soluyanov, Alexey A. [1 ,2 ,5 ]
机构
[1] ETH, Theoret Phys, CH-8093 Zurich, Switzerland
[2] ETH, Stn Zurich Q, CH-8093 Zurich, Switzerland
[3] Univ Copenhagen, Ctr Quantum Devices, DK-2100 Copenhagen, Denmark
[4] Univ Copenhagen, Niels Bohr Inst, Stn Copenhagen Q, Blegdamsvej 17, DK-2100 Copenhagen, Denmark
[5] St Petersburg State Univ, Dept Phys, St Petersburg 199034, Russia
基金
瑞士国家科学基金会; 欧洲研究理事会;
关键词
TOTAL-ENERGY CALCULATIONS; SUPERCONDUCTOR; FERMIONS; ALLOYS; CONDUCTANCE; TRANSITION; SCHEMES; LATTICE; STATES;
D O I
10.1103/PhysRevLett.117.076403
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Superconductor proximitized one-dimensional semiconductor nanowires with strong spin-orbit interaction (SOI) are, at this time, the most promising candidates for the realization of topological quantum information processing. In current experiments the SOI originates predominantly from extrinsic fields, induced by finite size effects and applied gate voltages. The dependence of the topological transition in these devices on microscopic details makes scaling to a large number of devices difficult unless a material with dominant intrinsic bulk SOI is used. Here, we show that wires made of certain ordered alloys InAs1-xSbx have spin splittings up to 20 times larger than those reached in pristine InSb wires. In particular, we show this for a stable ordered CuPt structure at x = 0.5, which has an inverted band ordering and realizes a novel type of a topological semimetal with triple degeneracy points in the bulk spectrum that produce topological surface Fermi arcs. Experimentally achievable strains can either drive this compound into a topological insulator phase or restore the normal band ordering, making the CuPt-ordered InAs0.5Sb0.5 a semiconductor with a large intrinsic linear in k bulk spin splitting.
引用
收藏
页数:6
相关论文
共 86 条
[1]   Exponential protection of zero modes in Majorana islands [J].
Albrecht, S. M. ;
Higginbotham, A. P. ;
Madsen, M. ;
Kuemmeth, F. ;
Jespersen, T. S. ;
Nygard, J. ;
Krogstrup, P. ;
Marcus, C. M. .
NATURE, 2016, 531 (7593) :206-+
[2]   New directions in the pursuit of Majorana fermions in solid state systems [J].
Alicea, Jason .
REPORTS ON PROGRESS IN PHYSICS, 2012, 75 (07)
[3]   Majorana fermions in a tunable semiconductor device [J].
Alicea, Jason .
PHYSICAL REVIEW B, 2010, 81 (12)
[4]  
[Anonymous], ARXIV14094376
[5]   Origin of giant bulk Rashba splitting: Application to BiTeI [J].
Bahramy, M. S. ;
Arita, R. ;
Nagaosa, N. .
PHYSICAL REVIEW B, 2011, 84 (04)
[6]   Lattice parameter engineering for III-V long wave infrared photonics [J].
Belenky, G. ;
Lin, Y. ;
Shterengas, L. ;
Donetsky, D. ;
Kipshidze, G. ;
Suchalkin, S. .
ELECTRONICS LETTERS, 2015, 51 (19) :1521-+
[7]  
Bellaiche L, 2000, PHYS REV B, V61, P7877, DOI 10.1103/PhysRevB.61.7877
[8]   Massless Dirac-Weyl fermions in a T3 optical lattice [J].
Bercioux, D. ;
Urban, D. F. ;
Grabert, H. ;
Haeusler, W. .
PHYSICAL REVIEW A, 2009, 80 (06)
[9]   Quantum spin Hall effect and topological phase transition in HgTe quantum wells [J].
Bernevig, B. Andrei ;
Hughes, Taylor L. ;
Zhang, Shou-Cheng .
SCIENCE, 2006, 314 (5806) :1757-1761
[10]   Topological nodal semimetals [J].
Burkov, A. A. ;
Hook, M. D. ;
Balents, Leon .
PHYSICAL REVIEW B, 2011, 84 (23)