GI/Geom/1/N/MWV queue with changeover time and searching for the optimum service rate in working vacation period

被引:16
作者
Yu, Miaomiao [1 ,2 ]
Tang, Yinghui [1 ]
Fu, Yonghong [3 ]
Pan, Lemeng [4 ]
机构
[1] Sichuan Normal Univ, Sch Math & Software Sci, Chengdu 610068, Peoples R China
[2] Sichuan Univ Sci & Engn, Sch Sci, Zigong 643000, Peoples R China
[3] Sichuan Univ Sci & Engn, Sch Comp, Zigong 643000, Peoples R China
[4] Univ Maryland, Dept Math, College Pk, MD 20742 USA
基金
中国国家自然科学基金; 高等学校博士学科点专项科研基金;
关键词
Working vacation; Discrete-time queue; Finite buffer; Parabolic method; Optimum value; GI/GEO/1; QUEUE; GI/M/1;
D O I
10.1016/j.cam.2010.10.013
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we consider a finite buffer size discrete-time multiple working vacation queue with changeover time. Employing the supplementary variable and embedded Markov chain techniques, we derive the steady state system length distributions at different time epochs. Based on the various system length distributions, the blocking probability, probability mass function of sojourn time and other performance measures along with some numerical examples have been discussed. Then, we use the parabolic method to search the optimum value of the service rate in working vacation period under a given cost structure. (C) 2010 Elsevier B.V. All rights reserved.
引用
收藏
页码:2170 / 2184
页数:15
相关论文
共 19 条
[1]   Analysis of a GI/M/1 queue with multiple working vacations [J].
Baba, Y .
OPERATIONS RESEARCH LETTERS, 2005, 33 (02) :201-209
[2]   On the GI/M/1/N queue with multiple working vacations -: analytic analysis and computation [J].
Banik, A. D. ;
Gupta, U. C. ;
Pathak, S. S. .
APPLIED MATHEMATICAL MODELLING, 2007, 31 (09) :1701-1710
[3]  
Bruneel H., 1993, Discrete-Time Models for Communication Systems Including ATM
[4]   The GI/M/1 queue and the GI/Geo/1 queue both with single working vacation [J].
Chae, Kyung C. ;
Lim, Dae E. ;
Yang, Won S. .
PERFORMANCE EVALUATION, 2009, 66 (07) :356-367
[5]   Analysis of the discrete-time GI/Geom(n)/1/N queue [J].
Chaudhry, ML ;
Templeton, JGC ;
Gupta, UC .
COMPUTERS & MATHEMATICS WITH APPLICATIONS, 1996, 31 (01) :59-68
[6]   The discrete-time MAP/PH/1 queue with multiple working vacations [J].
Goswami, Cosmika ;
Selvaraju, N. .
APPLIED MATHEMATICAL MODELLING, 2010, 34 (04) :931-946
[7]   Performance analysis of GI/M/1 queue with working vacations and vacation interruption [J].
Li, Ji-Hong ;
Tian, Nai-Shuo ;
Ma, Zhan-You .
APPLIED MATHEMATICAL MODELLING, 2008, 32 (12) :2715-2730
[8]   Discrete-time GI/Geo/1 queue with multiple working vacations [J].
Li, Ji-Hong ;
Tian, Nai-Shuo ;
Liu, Wen-Yuan .
QUEUEING SYSTEMS, 2007, 56 (01) :53-63
[9]   The discrete-time GI/Geo/1 queue with working vacations and vacation interruption [J].
Li, Ji-hong ;
Tian, Nai-shuo .
APPLIED MATHEMATICS AND COMPUTATION, 2007, 185 (01) :1-10
[10]  
Ronald LR, 1997, OPTIMIZATION OPERATI