Two-dimensional graphene analogues for biomedical applications

被引:782
作者
Chen, Yu [1 ,2 ,3 ]
Tan, Chaoliang [4 ]
Zhang, Hua [4 ]
Wang, Lianzhou [1 ,2 ]
机构
[1] Univ Queensland, Sch Chem Engn, Nanomat Ctr, Brisbane, Qld 4072, Australia
[2] Univ Queensland, AIBN, Brisbane, Qld 4072, Australia
[3] Chinese Acad Sci, Shanghai Inst Ceram, State Key Lab High Performance Ceram & Superfine, Shanghai 200050, Peoples R China
[4] Nanyang Technol Univ, Sch Mat Sci & Engn, Singapore 639798, Singapore
基金
上海市自然科学基金; 澳大利亚研究理事会; 新加坡国家研究基金会;
关键词
TRANSITION-METAL DICHALCOGENIDES; MESOPOROUS SILICA NANOPARTICLES; BORON-NITRIDE NANOSHEETS; PEGYLATED NANOGRAPHENE OXIDE; CARBON-BASED NANOMATERIALS; NEAR-INFRARED ABSORBENCY; NITROGEN-DOPED GRAPHENE; IN-VIVO BIODISTRIBUTION; PHASE C3N4 NANOSHEETS; LARGE-SCALE SYNTHESIS;
D O I
10.1039/c4cs00300d
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The increasing demand of clinical biomedicine and fast development of nanobiotechnology has substantially promoted the generation of a variety of organic/inorganic nanosystems for biomedical applications. Biocompatible two-dimensional (2D) graphene analogues (e.g., nanosheets of transition metal dichalcogenides, transition metal oxides, g-C3N4, Bi2Se3, BN, etc.), which are referred to as 2D-GAs, have emerged as a new unique family of nanomaterials that show unprecedented advantages and superior performances in biomedicine due to their unique compositional, structural and physicochemical features. In this review, we summarize the state-of-the-art progress of this dynamically developed material family with a particular focus on biomedical applications. After the introduction, the second section of the article summarizes a range of synthetic methods for new types of 2D-GAs as well as their surface functionalization. The subsequent section provides a snapshot on the use of these biocompatible 2D-GAs for a broad spectrum of biomedical applications, including therapeutic (photothermal/photodynamic therapy, chemotherapy and synergistic therapy), diagnostic (fluorescent/magnetic resonance/computed tomography/photoacoustic imaging) and theranostic (concurrent diagnostic imaging and therapy) applications, especially on oncology. In addition, we briefly present the biosensing applications of these 2D-GAs for the detection of biomacromolecules and their in vitro/in vivo biosafety evaluations. The last section summarizes some critical unresolved issues, possible challenges/obstacles and also proposes future perspectives related to the rational design and construction of 2D-GAs for biomedical engineering, which are believed to promote their clinical translations for benefiting the personalized medicine and human health.
引用
收藏
页码:2681 / 2701
页数:21
相关论文
共 192 条
[11]   Chemical Vapor Deposition of Boron Nitride Nanosheets on Metallic Substrates via Decaborane/Ammonia Reactions [J].
Chatterjee, Shahana ;
Luo, Zhengtang ;
Acerce, Muharrem ;
Yates, Douglas M. ;
Johnson, A. T. Charlie ;
Sneddon, Larry G. .
CHEMISTRY OF MATERIALS, 2011, 23 (20) :4414-4416
[12]   Polyethylenimine-functionalized graphene oxide as an efficient gene delivery vector [J].
Chen, Biao ;
Liu, Min ;
Zhang, Liming ;
Huang, Jie ;
Yao, Jianlin ;
Zhang, Zhijun .
JOURNAL OF MATERIALS CHEMISTRY, 2011, 21 (21) :7736-7741
[13]   Theranostic Nanomedicine [J].
Chen, Xiaoyuan ;
Gambhlr, Sanjiv S. ;
Cheon, Jinwoo .
ACCOUNTS OF CHEMICAL RESEARCH, 2011, 44 (10) :841-841
[14]   Encapsulation of Particle Ensembles in Graphene Nanosacks as a New Route to Multifunctional Materials [J].
Chen, Yantao ;
Guo, Fei ;
Qiu, Yang ;
Hu, Hiroe ;
Kulaots, Indrek ;
Walsh, Edward ;
Hurt, Robert H. .
ACS NANO, 2013, 7 (05) :3744-3753
[15]   Nanobiotechnology Promotes Noninvasive High-Intensity Focused Ultrasound Cancer Surgery [J].
Chen, Yu ;
Chen, Hangrong ;
Shi, Jianlin .
ADVANCED HEALTHCARE MATERIALS, 2015, 4 (01) :158-165
[16]   Break-up of Two-Dimensional MnO2 Nanosheets Promotes Ultrasensitive pH-Triggered Theranostics of Cancer [J].
Chen, Yu ;
Ye, Delai ;
Wu, Meiying ;
Chen, Hangrong ;
Zhang, Linlin ;
Shi, Jianlin ;
Wang, Lianzhou .
ADVANCED MATERIALS, 2014, 26 (41) :7019-+
[17]   Multifunctional Graphene Oxide-based Triple Stimuli-Responsive Nanotheranostics [J].
Chen, Yu ;
Xu, Pengfei ;
Shu, Zhu ;
Wu, Meiying ;
Wang, Lianzhou ;
Zhang, Shengjian ;
Zheng, Yuanyi ;
Chen, Hangrong ;
Wang, Jin ;
Li, Yaping ;
Shi, Jianlin .
ADVANCED FUNCTIONAL MATERIALS, 2014, 24 (28) :4386-4396
[18]   Colloidal RBC-Shaped, Hydrophilic, and Hollow Mesoporous Carbon Nanocapsules for Highly Efficient Biomedical Engineering [J].
Chen, Yu ;
Xu, Pengfei ;
Wu, Meiying ;
Meng, Qingshuo ;
Chen, Hangrong ;
Shu, Zhu ;
Wang, Jin ;
Zhang, Lingxia ;
Li, Yaping ;
Shi, Jianlin .
ADVANCED MATERIALS, 2014, 26 (25) :4294-4301
[19]   Inorganic Nanoparticle-Based Drug Codelivery Nanosystems To Overcome the Multidrug Resistance of Cancer Cells [J].
Chen, Yu ;
Chen, Hangrong ;
Shi, Jianlin .
MOLECULAR PHARMACEUTICS, 2014, 11 (08) :2495-2510
[20]   Drug delivery/imaging multifunctionality of mesoporous silica-based composite nanostructures [J].
Chen, Yu ;
Chen, Hangrong ;
Shi, Jianlin .
EXPERT OPINION ON DRUG DELIVERY, 2014, 11 (06) :917-930