Dynamics at and near conformal quantum critical points

被引:33
作者
Isakov, S. V. [1 ]
Fendley, P. [2 ,3 ]
Ludwig, A. W. W. [4 ]
Trebst, S. [3 ]
Troyer, M. [1 ]
机构
[1] ETH, CH-8093 Zurich, Switzerland
[2] Univ Virginia, Dept Phys, Charlottesville, VA 22904 USA
[3] Univ Calif Santa Barbara, Stn Q, Microsoft Res, Santa Barbara, CA 93106 USA
[4] Univ Calif Santa Barbara, Dept Phys, Santa Barbara, CA 93106 USA
基金
瑞士国家科学基金会; 美国国家科学基金会;
关键词
TOPOLOGICAL ORDER; TIME; COMPUTATION; LATTICE; PHASE;
D O I
10.1103/PhysRevB.83.125114
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
We explore the dynamical behavior at and near a special class of two-dimensional quantum critical points. Each is a conformal quantum critical point (CQCP), where in the scaling limit the equal-time correlators are those of a two-dimensional conformal field theory. The critical theories include the square-lattice quantum dimer model, the quantum Lifshitz theory, and a deformed toric code model. We show that under generic perturbation the latter flows toward the ordinary Lorentz-invariant (2 + 1)-dimensional Ising critical point, illustrating that CQCPs are generically unstable. We exploit a correspondence between the classical and quantum-dynamical behavior in such systems to perform an extensive numerical study of two lines of CQCPs in a quantum eight-vertex model or, equivalently, two coupled deformed toric codes. We find that the dynamical critical exponent z remains 2 along the U(1)-symmetric quantum Lifshitz line, while it continuously varies along the line with only Z(2) symmetry. This illustrates how two CQCPs can have very different dynamical properties, despite identical equal-time ground-state correlators. Our results equally apply to the dynamics of the corresponding purely classical models.
引用
收藏
页数:12
相关论文
共 40 条
  • [11] Realizing non-Abelian statistics in time-reversal-invariant systems
    Fendley, P
    Fradkin, E
    [J]. PHYSICAL REVIEW B, 2005, 72 (02)
  • [12] Topological order from quantum loops and nets
    Fendley, Paul
    [J]. ANNALS OF PHYSICS, 2008, 323 (12) : 3113 - 3136
  • [13] From String Nets to Nonabelions
    Fidkowski, Lukasz
    Freedman, Michael
    Nayak, Chetan
    Walker, Kevin
    Wang, Zhenghan
    [J]. COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2009, 287 (03) : 805 - 827
  • [14] STATISTICAL MECHANICS OF DIMERS ON A PLANE LATTICE .2. DIMER CORRELATIONS AND MONOMERS
    FISHER, ME
    STEPHENSON, J
    [J]. PHYSICAL REVIEW, 1963, 132 (04): : 1411 - &
  • [15] Bipartite Rokhsar-Kivelson points and cantor deconfinement
    Fradkin, E
    Huse, DA
    Moessner, R
    Oganesyan, V
    Sondhi, SL
    [J]. PHYSICAL REVIEW B, 2004, 69 (22) : 224415 - 1
  • [16] Finite-temperature properties of quantum Lifshitz transitions between valence-bond solid phases: An example of local quantum criticality
    Ghaemi, P
    Vishwanath, A
    Senthil, T
    [J]. PHYSICAL REVIEW B, 2005, 72 (02):
  • [17] Topology-driven quantum phase transitions in time-reversal-invariant anyonic quantum liquids
    Gils, Charlotte
    Trebst, Simon
    Kitaev, Alexei
    Ludwig, Andreas W. W.
    Troyer, Matthias
    Wang, Zhenghan
    [J]. NATURE PHYSICS, 2009, 5 (11) : 834 - 839
  • [18] RIGOROUS INEQUALITIES FOR SPIN-RELAXATION FUNCTION IN KINETIC ISING-MODEL
    HALPERIN, BI
    [J]. PHYSICAL REVIEW B, 1973, 8 (09): : 4437 - 4440
  • [19] Sufficient conditions for topological order in insulators
    Hastings, MB
    [J]. EUROPHYSICS LETTERS, 2005, 70 (06): : 824 - 830
  • [20] From classical to quantum dynamics at Rokhsar-Kivelson points
    Henley, CL
    [J]. JOURNAL OF PHYSICS-CONDENSED MATTER, 2004, 16 (11) : S891 - S898