Dynamics at and near conformal quantum critical points

被引:33
作者
Isakov, S. V. [1 ]
Fendley, P. [2 ,3 ]
Ludwig, A. W. W. [4 ]
Trebst, S. [3 ]
Troyer, M. [1 ]
机构
[1] ETH, CH-8093 Zurich, Switzerland
[2] Univ Virginia, Dept Phys, Charlottesville, VA 22904 USA
[3] Univ Calif Santa Barbara, Stn Q, Microsoft Res, Santa Barbara, CA 93106 USA
[4] Univ Calif Santa Barbara, Dept Phys, Santa Barbara, CA 93106 USA
基金
瑞士国家科学基金会; 美国国家科学基金会;
关键词
TOPOLOGICAL ORDER; TIME; COMPUTATION; LATTICE; PHASE;
D O I
10.1103/PhysRevB.83.125114
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
We explore the dynamical behavior at and near a special class of two-dimensional quantum critical points. Each is a conformal quantum critical point (CQCP), where in the scaling limit the equal-time correlators are those of a two-dimensional conformal field theory. The critical theories include the square-lattice quantum dimer model, the quantum Lifshitz theory, and a deformed toric code model. We show that under generic perturbation the latter flows toward the ordinary Lorentz-invariant (2 + 1)-dimensional Ising critical point, illustrating that CQCPs are generically unstable. We exploit a correspondence between the classical and quantum-dynamical behavior in such systems to perform an extensive numerical study of two lines of CQCPs in a quantum eight-vertex model or, equivalently, two coupled deformed toric codes. We find that the dynamical critical exponent z remains 2 along the U(1)-symmetric quantum Lifshitz line, while it continuously varies along the line with only Z(2) symmetry. This illustrates how two CQCPs can have very different dynamical properties, despite identical equal-time ground-state correlators. Our results equally apply to the dynamics of the corresponding purely classical models.
引用
收藏
页数:12
相关论文
共 40 条
  • [1] Topological order and conformal quantum critical points
    Ardonne, E
    Fendley, P
    Fradkin, E
    [J]. ANNALS OF PHYSICS, 2004, 310 (02) : 493 - 551
  • [2] Baxter R., 2007, Exactly Solved Models in Statistical Mechanics
  • [3] Cluster Monte Carlo simulation of the transverse Ising model -: art. no. 066110
    Blöte, HWJ
    Deng, YJ
    [J]. PHYSICAL REVIEW E, 2002, 66 (06): : 8
  • [4] BRAVYI S, ARXIV10014363, P23902
  • [5] Topological quantum order: Stability under local perturbations
    Bravyi, Sergey
    Hastings, Matthew B.
    Michalakis, Spyridon
    [J]. JOURNAL OF MATHEMATICAL PHYSICS, 2010, 51 (09)
  • [6] Space-time geometry of topological phases
    Burnell, F. J.
    Simon, Steven H.
    [J]. ANNALS OF PHYSICS, 2010, 325 (11) : 2550 - 2593
  • [7] High-temperature criticality in strongly constrained quantum systems
    Castelnovo, C
    Chamon, C
    Mudry, C
    Pujol, P
    [J]. PHYSICAL REVIEW B, 2006, 73 (14):
  • [8] Quantum topological phase transition at the microscopic level
    Castelnovo, Claudio
    Chamon, Claudio
    [J]. PHYSICAL REVIEW B, 2008, 77 (05)
  • [9] Relating field theories via stochastic quantization
    Dijkgraaf, Robbert
    Orlando, Domenico
    Reffert, Susanne
    [J]. NUCLEAR PHYSICS B, 2010, 824 (03) : 365 - 386
  • [10] Robustness of a Perturbed Topological Phase
    Dusuel, Sebastien
    Kamfor, Michael
    Orus, Roman
    Schmidt, Kai Phillip
    Vidal, Julien
    [J]. PHYSICAL REVIEW LETTERS, 2011, 106 (10)