Self-assembled Li3V2(PO4)3/reduced graphene oxide multilayer composite prepared by sequential adsorption

被引:5
作者
Kim, Myeong-Seong [1 ]
Bak, Seong-Min [2 ]
Lee, Suk-Woo [1 ]
Cho, Byung-Won [3 ]
Roh, Kwang Chul [4 ]
Kim, Kwang-Bum [1 ]
机构
[1] Yonsei Univ, Dept Mat Sci & Engn, 134 Shinchon Dong, Seoul 120749, South Korea
[2] Brookhaven Natl Lab, Div Chem, Upton, NY 11973 USA
[3] Korea Inst Sci & Technol, Ctr Energy Convergence Res, Hwarangno 14 Gil 5, Seoul 136791, South Korea
[4] Korea Inst Ceram Engn Technol, Energy Mat Ctr, Energy & Environm Div, 101 Soho Ro, Jinju Si 660031, Gyeongsangnam D, South Korea
基金
新加坡国家研究基金会;
关键词
Multilayer structure; Graphene-based 3D assembly; Sequential adsorption method; High-rate lithium-ion batteries; Energy efficiency; BATTERY CATHODE MATERIALS; HIGH-CAPACITY; ELECTROCHEMICAL PERFORMANCE; BINDER-FREE; ION; CARBON; NANOCOMPOSITES; NANOSHEETS; SHEETS; MICROSPHERES;
D O I
10.1016/j.jpowsour.2017.09.057
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Herein, we report on Li3V2(PO4)(3) (LVP)/reduced graphene oxide (rGO) multilayer composites prepared via a sequential adsorption method and subsequent heat treatment, and their use as cathodes for high rate lithium-ion batteries. The sequential adsorption process includes adsorbing oppositely charged components of anionic inorganic species and cationic head of a surfactant adsorbed to graphite oxide sheets, which is a key step in the fabrication of the LVP/rGO multilayer composites. The multilayer structure has open channels between the highly conductive rGO layers while achieving a relatively high tap density, which could effectively improve the rate capability. Consequently, the LVP/rGO multilayer composites exhibit a high tap density (0.6 g cm(-3)) and good electrochemical properties. Specifically, in the voltage range of 3.0-4.3 V, the composite exhibits a specific capacity of 131 mAh g(-1) at 0.1C, a good rate capabilities (88% capacity retention at 60C), and long cycling performance (97% capacity retention after 500 cycles at 10C). Moreover, in the extended voltage range of 3.0-4.8 V, it exhibits a high specific capacity of 185 mAh g(-1) at 0.2C, a good rate capability (66% capacity retention at 30C), and stable cycling performance (96% capacity retention after 500 cycles at 10C). (C) 2017 Elsevier B.V. All rights reserved.
引用
收藏
页码:167 / 176
页数:10
相关论文
共 55 条
[1]   Layer-by-Layer Assembly for Graphene-Based Multilayer Nanocomposites: The Field Manual [J].
Ahn, Eungjin ;
Lee, Taemin ;
Gu, Minsu ;
Park, Minju ;
Min, Sa Hoon ;
Kim, Byeong-Su .
CHEMISTRY OF MATERIALS, 2017, 29 (01) :69-79
[2]  
[Anonymous], 2016, SCI REP UK
[3]   Building better batteries [J].
Armand, M. ;
Tarascon, J. -M. .
NATURE, 2008, 451 (7179) :652-657
[4]   SUPERIONIC CONDUCTORS LI3FE2(PO4)3, LI3SC2(PO4)3, LI3CR2(PO4)3 - SYNTHESIS, STRUCTURE AND ELECTROPHYSICAL PROPERTIES [J].
BYKOV, AB ;
CHIRKIN, AP ;
DEMYANETS, LN ;
DORONIN, SN ;
GENKINA, EA ;
IVANOVSHITS, AK ;
KONDRATYUK, IP ;
MAKSIMOV, BA ;
MELNIKOV, OK ;
MURADYAN, LN ;
SIMONOV, VI ;
TIMOFEEVA, VA .
SOLID STATE IONICS, 1990, 38 (1-2) :31-52
[5]   Comprehensive Enhancement of Nanostructured Lithium-Ion Battery Cathode Materials via Conformal Graphene Dispersion [J].
Chen, Kan-Sheng ;
Xu, Rui ;
Luu, Norman S. ;
Secor, Ethan B. ;
Hamamoto, Koichi ;
Li, Qianqian ;
Kim, Soo ;
Sangwan, Vinod K. ;
Balla, Itamar ;
Guiney, Linda M. ;
Seo, Jung-Woo T. ;
Yu, Xiankai ;
Liu, Weiwei ;
Wu, Jinsong ;
Wolverton, Chris ;
Dravid, Vinayak P. ;
Barnett, Scott A. ;
Lu, Jun ;
Amine, Khalil ;
Hersam, Mark C. .
NANO LETTERS, 2017, 17 (04) :2539-2546
[6]   High performance Li3V2(PO4)3/C composite cathode material for lithium ion batteries studied in pilot scale test [J].
Chen, Zhenyu ;
Dai, Changsong ;
Wu, Gang ;
Nelson, Mark ;
Hu, Xinguo ;
Zhang, Ruoxin ;
Liu, Jiansheng ;
Xia, Jicai .
ELECTROCHIMICA ACTA, 2010, 55 (28) :8595-8599
[7]   Nano-Li3V2(PO4)3 enwrapped into reduced graphene oxide sheets for lithium-ion batteries [J].
Cheng, Bin ;
Zhang, Xu-Dong ;
Ma, Xiao-Hang ;
Wen, Jian-Wu ;
Yu, Yan ;
Chen, Chun-Hua .
JOURNAL OF POWER SOURCES, 2014, 265 :104-109
[8]   Enhanced electrochemical performance of Li3V2(PO4)3/Ag-graphene composites as cathode materials for Li-ion batteries [J].
Choi, Man-Soo ;
Kim, Hyun-Soo ;
Lee, Young-Moo ;
Jin, Bong-Soo .
JOURNAL OF MATERIALS CHEMISTRY A, 2014, 2 (21) :7873-7879
[9]   Recent Achievements on Inorganic Electrode Materials for Lithium-Ion Batteries [J].
Croguennec, Laurence ;
Palacin, M. Rosa .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2015, 137 (09) :3140-3156
[10]   Effects of Ti and Mg Codoping on the Electrochemical Performance of Li3V2(PO4)3 Cathode Material for Lithium Ion Batteries [J].
Deng, C. ;
Zhang, S. ;
Yang, S. Y. ;
Gao, Y. ;
Wu, B. ;
Ma, L. ;
Fu, B. L. ;
Wu, Q. ;
Liu, F. L. .
JOURNAL OF PHYSICAL CHEMISTRY C, 2011, 115 (30) :15048-15056