Parallel algorithms for finding the center of interval and circular-arc graphs

被引:0
作者
Hsu, FR [1 ]
Shan, MK
机构
[1] Taichung Healthcare & Management Univ, Dept Informat Technol, Taichung, Taiwan
[2] Natl Chengchi Univ, Dept Comp Sci, Taipei 11623, Taiwan
关键词
parallel algorithms; EREW PRAM; center problem; interval graph; circular-arc graph;
D O I
暂无
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
The center problem of a graph is motivated by a number of facility location problems. In this paper, we propose parallel algorithms for finding the center of interval graphs and circular-arc graphs. Our algorithms run in O(log n) time algorithm using O(n/ log n) processors while the intervals and arcs are given in sorted order. Our algorithms are on the EREW PRAM model.
引用
收藏
页码:2704 / 2709
页数:6
相关论文
共 12 条
[1]  
Akl S.G., 1997, Parallel Computation: Models and Methods
[2]   FINDING LEVEL-ANCESTORS IN TREES [J].
BERKMAN, O ;
VISHKIN, U .
JOURNAL OF COMPUTER AND SYSTEM SCIENCES, 1994, 48 (02) :214-230
[3]   Efficient algorithms for centers and medians in interval and circular-arc graphs [J].
Bespamyatnikh, S ;
Bhattacharya, B ;
Keil, M ;
Kirkpatrick, D ;
Segal, M .
NETWORKS, 2002, 39 (03) :144-152
[4]  
CHAO HS, 2001, P JOINT M 5 WORLD MU, V7, P331
[5]  
Chen DZ, 1998, NETWORKS, V31, P249, DOI 10.1002/(SICI)1097-0037(199807)31:4<249::AID-NET5>3.0.CO
[6]  
2-D
[7]   PARALLEL MERGE SORT [J].
COLE, R .
SIAM JOURNAL ON COMPUTING, 1988, 17 (04) :770-785
[8]   TRAPEZOID GRAPHS AND THEIR COLORING [J].
DAGAN, I ;
GOLUMBIC, MC ;
PINTER, RY .
DISCRETE APPLIED MATHEMATICS, 1988, 21 (01) :35-46
[9]  
Golumbic MC., 1980, Algorithmic Graph Theory and Perfect Graphs
[10]   OPTIMAL PARALLEL ALGORITHMS FOR PROBLEMS MODELED BY A FAMILY OF INTERVALS [J].
OLARIU, S ;
SCHWING, JL ;
ZHANG, JY .
IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, 1992, 3 (03) :364-374