MULTILEVEL HIERARCHICAL DECOMPOSITION OF FINITE ELEMENT WHITE NOISE WITH APPLICATION TO MULTILEVEL MARKOV CHAIN MONTE CARLO

被引:3
作者
Fairbanks, Hillary R. [1 ]
Villa, Umberto [2 ]
Vassilevski, Panayot S. [1 ,3 ]
机构
[1] Lawrence Livermore Natl Lab, Ctr Appl Sci Comp, Livermore, CA 94550 USA
[2] Washington Univ, Elect & Syst Engn Dept, St Louis, MO 63130 USA
[3] Portland State Univ, Fariborz Maseeh Dept Math & Stat, Portland, OR 97201 USA
关键词
Gaussian random field; nonlinear Bayesian inference; Markov chain Monte Carlo; multilevel Markov chain Monte Carlo; high-dimensional uncertainty quantification; algebraic multigrid; BAYESIAN INVERSE PROBLEMS; STOCHASTIC NEWTON MCMC; UNCERTAINTY QUANTIFICATION; COMPUTATIONAL FRAMEWORK; HYBRIDIZATION; ALGORITHMS; BOUNDARY; COARSE;
D O I
10.1137/20M1349606
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this work we develop a new hierarchical multilevel approach to generate Gaussian random field realizations in an algorithmically scalable manner that is well suited to incorporating into multilevel Markov chain Monte Carlo (MCMC) algorithms. This approach builds off of other partial differential equation (PDE) approaches for generating Gaussian random field realizations; in particular, a single field realization may be formed by solving a reaction-diffusion PDE with a spatial white noise source function as the right-hand side. While these approaches have been explored to accelerate forward uncertainty quantification tasks, e.g., multilevel Monte Carlo, the previous constructions are not directly applicable to multilevel MCMC frameworks which build finescale random fields in a hierarchical fashion from coarse-scale random fields. Our new hierarchical multilevel method relies on a hierarchical decomposition of the white noise source function in L-2 which allows us to form Gaussian random field realizations across multiple levels of discretization in a way that fits into multilevel MCMC algorithmic frameworks. After presenting our main theoretical results and numerical scaling results to showcase the utility of this new hierarchical PDE method for generating Gaussian random field realizations, this method is tested on a four-level MCMC algorithm to explore its feasibility.
引用
收藏
页码:S293 / S316
页数:24
相关论文
共 52 条
  • [1] Adler R.J., APPL RANDOM FIELDS G
  • [2] Adler RJ., 2009, Random Fields and Geometry
  • [3] MFEM: A modular finite element methods library
    Anderson, Robert
    Andrej, Julian
    Barker, Andrew
    Bramwell, Jamie
    Camier, Jean-Sylvain
    Cerveny, Jakub
    Dobrev, Veselin
    Dudouit, Yohann
    Fisher, Aaron
    Kolev, Tzanio
    Pazner, Will
    Stowell, Mark
    Tomov, Vladimir
    Akkerman, Ido
    Dahm, Johann
    Medina, David
    Zampini, Stefano
    [J]. COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2021, 81 : 42 - 74
  • [4] [Anonymous], 2004, Springer texts in statistics
  • [5] [Anonymous], 2015, PARELAG ELEMENT AGGL
  • [6] [Anonymous], 1991, STOCHASTIC FINITE EL, DOI DOI 10.1007/978-1-4612-3094-6
  • [7] [Anonymous], 2008, HIERARCHICAL MATRICE
  • [8] Multi-level Monte Carlo Finite Element method for elliptic PDEs with stochastic coefficients
    Barth, Andrea
    Schwab, Christoph
    Zollinger, Nathaniel
    [J]. NUMERISCHE MATHEMATIK, 2011, 119 (01) : 123 - 161
  • [9] Geometric MCMC for infinite-dimensional inverse problems
    Beskos, Alexandros
    Girolami, Mark
    Lan, Shiwei
    Farrell, Patrick E.
    Stuart, Andrew M.
    [J]. JOURNAL OF COMPUTATIONAL PHYSICS, 2017, 335 : 327 - 351
  • [10] Solving large-scale PDE-constrained Bayesian inverse problems with Riemann manifold Hamiltonian Monte Carlo
    Bui-Thanh, T.
    Girolami, M.
    [J]. INVERSE PROBLEMS, 2014, 30 (11)