Comparison of polynomial approximations to speed up planewave-based quantum Monte Carlo calculations

被引:2
作者
Parker, William D. [1 ]
Umrigar, C. J. [2 ]
Alfe, Dario [3 ,4 ]
Petruzielo, F. R. [2 ]
Hennig, Richard G. [1 ,5 ]
Wilkins, John W. [1 ]
机构
[1] Ohio State Univ, Dept Phys, Columbus, OH 43210 USA
[2] Cornell Univ, Atom & Solid State Phys Lab, Ithaca, NY 14853 USA
[3] UCL, Dept Earth Sci, London WC1E 6BT, England
[4] UCL, Dept Phys & Astron, London WC1E 6BT, England
[5] Univ Florida, Dept Mat Sci & Engn, Gainesville, FL 32611 USA
基金
美国国家科学基金会; 英国工程与自然科学研究理事会;
关键词
Quantum Monte Carlo; B-splines;
D O I
10.1016/j.jcp.2015.01.037
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
The computational cost of quantum Monte Carlo (QMC) calculations of realistic periodic systems depends strongly on the method of storing and evaluating the many-particle wave function. Previous work by Williamson et al. (2001) [35] and Alfe and Gillan, (2004) [36] has demonstrated the reduction of the 0(N-3) cost of evaluating the Slater determinant with planewaves to 0(N-2) using localized basis functions. We compare four polynomial approximations as basis functions - interpolating Lagrange polynomials, interpolating piecewise-polynomial-form (pp-) splines, and basis-form (B-) splines (interpolating and smoothing). All these basis functions provide a similar speedup relative to the planewave basis. The pp-splines have eight times the memory requirement of the other methods. To test the accuracy of the basis functions, we apply them to the ground state structures of Si, Al, and MgO. The polynomial approximations differ in accuracy most strongly for MgO, and smoothing B-splines most closely reproduce the planewave value for of the variational Monte Carlo energy. Using separate approximations for the Laplacian of the orbitals increases the accuracy sufficiently to justify the increased memory requirement, making smoothing B-splines, with separate approximation for the Laplacian, the preferred choice for approximating planewave-represented orbitals in QMC calculations. (C) 2015 Elsevier Inc. All rights reserved.
引用
收藏
页码:77 / 87
页数:11
相关论文
共 48 条
  • [1] Quantum Monte Carlo study of high-pressure cubic TiO2
    Abbasnejad, M.
    Shojaee, E.
    Mohammadizadeh, M. R.
    Alaei, M.
    Maezono, Ryo
    [J]. APPLIED PHYSICS LETTERS, 2012, 100 (26)
  • [2] Efficient localized basis set for quantum Monte Carlo calculations on condensed matter -: art. no. 161101
    Alfè, D
    Gillan, MJ
    [J]. PHYSICAL REVIEW B, 2004, 70 (16) : 1 - 4
  • [3] Diamond and β-tin structures of Si studied with quantum Monte Carlo calculations -: art. no. 214102
    Alfè, D
    Gillan, MJ
    Towler, MD
    Needs, RJ
    [J]. PHYSICAL REVIEW B, 2004, 70 (21): : 1 - 8
  • [4] Quantum Monte Carlo calculations of the structural properties and the B1-B2 phase transition of MgO -: art. no. 014114
    Alfè, D
    Alfredsson, M
    Brodholt, J
    Gillan, MJ
    Towler, MD
    Needs, RJ
    [J]. PHYSICAL REVIEW B, 2005, 72 (01)
  • [5] Schottky defect formation energy in MgO calculated by diffusion Monte Carlo -: art. no. 220101
    Alfè, D
    Gillan, MJ
    [J]. PHYSICAL REVIEW B, 2005, 71 (22)
  • [6] RANDOM-WALK SIMULATION OF SCHRODINGER EQUATION - H+3
    ANDERSON, JB
    [J]. JOURNAL OF CHEMICAL PHYSICS, 1975, 63 (04) : 1499 - 1503
  • [7] [Anonymous], LECT ELEMENTARY MATH
  • [8] Dissociation of High-Pressure Solid Molecular Hydrogen: A Quantum Monte Carlo and Anharmonic Vibrational Study
    Azadi, Sam
    Monserrat, Bartomeu
    Foulkes, W. M. C.
    Needs, R. J.
    [J]. PHYSICAL REVIEW LETTERS, 2014, 112 (16)
  • [9] Quantum Monte Carlo study of high pressure solid molecular hydrogen
    Azadi, Sam
    Foulkes, W. M. C.
    Kuehne, Thomas D.
    [J]. NEW JOURNAL OF PHYSICS, 2013, 15
  • [10] Comparison of screened hybrid density functional theory to diffusion Monte Carlo in calculations of total energies of silicon phases and defects
    Batista, Enrique R.
    Heyd, Jochen
    Hennig, Richard G.
    Uberuaga, Blas P.
    Martin, Richard L.
    Scuseria, Gustavo E.
    Umrigar, C. J.
    Wilkins, John W.
    [J]. PHYSICAL REVIEW B, 2006, 74 (12)