BRESSE SYSTEMS WITH LOCALIZED KELVIN-VOIGT DISSIPATION

被引:0
作者
Contreras, Gabriel Aguilera [1 ,2 ]
Munoz-Rivera, Jaime E. [1 ,3 ]
机构
[1] Univ Bio Bio, Dept Matemat, Concepcion, Chile
[2] Univ Concepcion, Dept Ciencias Basicas, Los Angeles, Chile
[3] Lab Nacl Comp Cient, Petropolis, RJ, Brazil
关键词
Bresse beam; transmission problem; exponential stability; localized viscoelastic dissipative mechanism; polynomial stability; STABILITY; SPECTRUM; DECAY;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study the effect of localized viscoelastic dissipation for curved beams. We consider a circular beam with three components, two of them viscous with constitutive laws of Kelvin-Voigt type, one continuous and the other discontinuous. The third component is elastic without any dissipative mechanism. Our main result is that the rate of decay depends on the position of each component. More precisely, we prove that the model is exponentially stable if and only if the viscous component with discontinuous constitutive law is not in the center of the beam. We prove that when there is no exponential stability, the solution decays polynomially.
引用
收藏
页数:14
相关论文
共 50 条
  • [31] Stabilization of transmission system of Kirchhoff plate and wave equations with a localized Kelvin-Voigt damping
    Hong, Gimyong
    Hong, Hakho
    JOURNAL OF EVOLUTION EQUATIONS, 2021, 21 (02) : 2239 - 2264
  • [32] Viscoelastic bidispersive convection with a Kelvin-Voigt fluid
    Franchi, Franca
    Nibbi, Roberta
    Straughan, Brian
    CONTINUUM MECHANICS AND THERMODYNAMICS, 2025, 37 (02)
  • [33] Optimal stability for laminated beams with Kelvin-Voigt damping and Fourier's law
    Zannini, Victor Cabanillas
    Mendez, Teofanes Quispe
    Ramos, A. J. A.
    ASYMPTOTIC ANALYSIS, 2024, 137 (1-2) : 123 - 151
  • [34] The effect of Kelvin-Voigt damping on the stability of Timoshenko laminated beams system with history
    Cabanillas, Victor R.
    Mendez, Teofanes Quispe
    Barrientos, Carlos Quicano
    RENDICONTI DEL CIRCOLO MATEMATICO DI PALERMO, 2024, 73 (08) : 2973 - 2996
  • [35] Thermal Timoshenko beam system with suspenders and Kelvin-Voigt damping
    Mukiawa, Soh Edwin
    Khan, Yasir
    Al Sulaimani, Hamdan
    Omaba, McSylvester Ejighikeme
    Enyi, Cyril Dennis
    FRONTIERS IN APPLIED MATHEMATICS AND STATISTICS, 2023, 9
  • [36] Exponential stability of an elastic string with local Kelvin-Voigt damping
    Zhang, Qiong
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2010, 61 (06): : 1009 - 1015
  • [37] Boundary-to-Displacement asymptotic gains for wave systems with Kelvin-Voigt damping
    Karafyllis, Iasson
    Kontorinaki, Maria
    Krstic, Miroslav
    INTERNATIONAL JOURNAL OF CONTROL, 2021, 94 (10) : 2822 - 2833
  • [38] EVENTUAL DIFFERENTIABILITY OF A STRING WITH LOCAL KELVIN-VOIGT DAMPING
    Liu, Kangsheng
    Liu, Zhuangyi
    Zhang, Qiong
    ESAIM-CONTROL OPTIMISATION AND CALCULUS OF VARIATIONS, 2017, 23 (02) : 443 - 454
  • [39] Stabilization for the Wave Equation with Singular Kelvin-Voigt Damping
    Ammari, Kais
    Hassine, Fathi
    Robbiano, Luc
    ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2020, 236 (02) : 577 - 601
  • [40] On the spectrum of Euler-Bernoulli beam equation with Kelvin-Voigt damping
    Zhang, Guo-Dong
    Guo, Bao-Zhu
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2011, 374 (01) : 210 - 229