BRESSE SYSTEMS WITH LOCALIZED KELVIN-VOIGT DISSIPATION

被引:0
|
作者
Contreras, Gabriel Aguilera [1 ,2 ]
Munoz-Rivera, Jaime E. [1 ,3 ]
机构
[1] Univ Bio Bio, Dept Matemat, Concepcion, Chile
[2] Univ Concepcion, Dept Ciencias Basicas, Los Angeles, Chile
[3] Lab Nacl Comp Cient, Petropolis, RJ, Brazil
关键词
Bresse beam; transmission problem; exponential stability; localized viscoelastic dissipative mechanism; polynomial stability; STABILITY; SPECTRUM; DECAY;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study the effect of localized viscoelastic dissipation for curved beams. We consider a circular beam with three components, two of them viscous with constitutive laws of Kelvin-Voigt type, one continuous and the other discontinuous. The third component is elastic without any dissipative mechanism. Our main result is that the rate of decay depends on the position of each component. More precisely, we prove that the model is exponentially stable if and only if the viscous component with discontinuous constitutive law is not in the center of the beam. We prove that when there is no exponential stability, the solution decays polynomially.
引用
收藏
页数:14
相关论文
共 50 条
  • [1] Stability of a Timoshenko System with Localized Kelvin-Voigt Dissipation
    Aguilera Contreras, Gabriel
    Munoz Rivera, Jaime E.
    APPLIED MATHEMATICS AND OPTIMIZATION, 2021, 84 (03) : 3547 - 3563
  • [2] On the Stabilization of the Bresse Beam with Kelvin-Voigt Damping
    El Arwadi, Toufic
    Youssef, Wael
    APPLIED MATHEMATICS AND OPTIMIZATION, 2021, 83 (03) : 1831 - 1857
  • [3] THE LACK OF EXPONENTIAL STABILITY IN CERTAIN TRANSMISSION PROBLEMS WITH LOCALIZED KELVIN-VOIGT DISSIPATION
    Alves, Margareth
    Rivera, Jaime Munoz
    Sepulveda, Mauricio
    Vera Villagran, Octavio
    SIAM JOURNAL ON APPLIED MATHEMATICS, 2014, 74 (02) : 345 - 365
  • [4] Stability of a Timoshenko System with Localized Kelvin–Voigt Dissipation
    Gabriel Aguilera Contreras
    Jaime E. Muñoz Rivera
    Applied Mathematics & Optimization, 2021, 84 : 3547 - 3563
  • [5] Stability of elastic transmission systems with a local Kelvin-Voigt damping
    Hassine, Fathi
    EUROPEAN JOURNAL OF CONTROL, 2015, 23 : 84 - 93
  • [6] Asymptotic behavior of thermoelastic systems of laminated Timoshenko beams with Kelvin-Voigt damping
    Quispe Mendez, Teofanes
    Cabanillas, Victor R.
    Feng, Baowei
    APPLICABLE ANALYSIS, 2024, 103 (18) : 3400 - 3424
  • [7] Stability of a Timoshenko system with local Kelvin-Voigt damping
    Tian, Xinhong
    Zhang, Qiong
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2017, 68 (01):
  • [8] Sharp stability of a string with local degenerate Kelvin-Voigt damping
    Han, Zhong-Jie
    Liu, Zhuangyi
    Zhang, Qiong
    ZAMM-ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK, 2022, 102 (10):
  • [9] Mindlin-Timoshenko systems with Kelvin-Voigt: analyticity and optimal decay rates
    Silva, M. A. Jorge
    Ma, T. F.
    Rivera, J. E. Munoz
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2014, 417 (01) : 164 - 179
  • [10] STABILITY OF THE WAVE EQUATION WITH LOCALIZED KELVIN-VOIGT DAMPING AND BOUNDARY DELAY FEEDBACK
    Nicaise, Serge
    Pignotti, Cristina
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES S, 2016, 9 (03): : 791 - 813