THE LIMIT SHAPE OF LARGE ALTERNATING SIGN MATRICES

被引:31
作者
Colomo, F. [1 ]
Pronko, A. G. [2 ]
机构
[1] Ist Nazl Fis Nucl, Sez Firenze, I-50019 Sesto Fiorentino, FI, Italy
[2] Russian Acad Sci, St Petersburg Dept, VA Steklov Math Inst, St Petersburg 191023, Russia
基金
俄罗斯基础研究基金会;
关键词
six-vertex model; domain wall boundary conditions; alternating sign matrices; asymptotic limit shapes; phase separation phenomena; random matrix models; emptiness formation probability; condensation hypothesis; WALL BOUNDARY-CONDITIONS; 6-VERTEX MODEL;
D O I
10.1137/080730639
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The problem of the limit shape of large alternating sign matrices (ASMs) is addressed by studying the emptiness formation probability (EFP) in the domain wall six-vertex model. Assuming that the limit shape arises in correspondence with the "condensation" of almost all solutions of the saddle-point equations for certain multiple integral representations for EFP, a conjectural expression for the limit shape of large ASMs is derived. The case of 3-enumerated ASMs is also considered.
引用
收藏
页码:1558 / 1571
页数:14
相关论文
共 28 条
[21]   CALCULATION OF NORMS OF BETHE WAVE-FUNCTIONS [J].
KOREPIN, VE .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1982, 86 (03) :391-418
[22]  
Kuperberg G., 1996, INT MATH RES NOTICES, V1996, P139, DOI [10.1155/S1073792896000128, DOI 10.1155/S1073792896000128]
[23]   KAZAKOV-MIGDAL MODEL WITH LOGARITHMIC POTENTIAL AND THE DOUBLE PENNER MATRIX MODEL [J].
PANIAK, L ;
WEISS, N .
JOURNAL OF MATHEMATICAL PHYSICS, 1995, 36 (05) :2512-2530
[24]  
PENNER RC, 1988, J DIFFER GEOM, V27, P35
[25]  
Propp J., 2001, DISCRETE MATH THEOR, P43
[26]  
Syljuåsen OF, 2004, PHYS REV E, V70, DOI 10.1103/PhysRevE.70.016118
[27]  
Takhtadzhan L. A., 1979, Russ. Math. Surv., V34, P11
[28]  
WIELAND B, 2008, COMMUNICATION 0110