THE LIMIT SHAPE OF LARGE ALTERNATING SIGN MATRICES

被引:31
作者
Colomo, F. [1 ]
Pronko, A. G. [2 ]
机构
[1] Ist Nazl Fis Nucl, Sez Firenze, I-50019 Sesto Fiorentino, FI, Italy
[2] Russian Acad Sci, St Petersburg Dept, VA Steklov Math Inst, St Petersburg 191023, Russia
基金
俄罗斯基础研究基金会;
关键词
six-vertex model; domain wall boundary conditions; alternating sign matrices; asymptotic limit shapes; phase separation phenomena; random matrix models; emptiness formation probability; condensation hypothesis; WALL BOUNDARY-CONDITIONS; 6-VERTEX MODEL;
D O I
10.1137/080730639
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The problem of the limit shape of large alternating sign matrices (ASMs) is addressed by studying the emptiness formation probability (EFP) in the domain wall six-vertex model. Assuming that the limit shape arises in correspondence with the "condensation" of almost all solutions of the saddle-point equations for certain multiple integral representations for EFP, a conjectural expression for the limit shape of large ASMs is derived. The case of 3-enumerated ASMs is also considered.
引用
收藏
页码:1558 / 1571
页数:14
相关论文
共 28 条
[1]   Numerical study of the 6-vertex model with domain wall boundary conditions [J].
Allison, D ;
Reshetikhin, N .
ANNALES DE L INSTITUT FOURIER, 2005, 55 (06) :1847-1869
[2]   GENERALIZED PENNER MODELS TO ALL GENERA [J].
AMBJORN, J ;
KRISTJANSEN, CF ;
MAKEENKO, Y .
PHYSICAL REVIEW D, 1994, 50 (08) :5193-5203
[3]  
[Anonymous], 1996, New York J. Math.
[4]  
Baxter R., 2007, Exactly Solved Models in Statistical Mechanics
[5]   Boundary correlation functions of the six-vertex model [J].
Bogoliubov, NM ;
Pronko, AG ;
Zvonarev, MB .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2002, 35 (27) :5525-5541
[6]  
Bressoud D. M., 1999, PROOFS CONFIRMATIONS
[7]  
Cohn H., 1998, NEW YORK J MATH, V4, P137
[8]  
Colomo F, 2008, CONTEMP MATH, V458, P361
[9]   Emptiness formation probability in the domain-wall six-vertex model [J].
Colomo, F. ;
Pronko, A. G. .
NUCLEAR PHYSICS B, 2008, 798 (03) :340-362
[10]   Square ice, alternating sign matrices, and classical orthogonal polynomials [J].
Colomo, F ;
Pronko, AG .
JOURNAL OF STATISTICAL MECHANICS-THEORY AND EXPERIMENT, 2005, :119-151