A novel thermostable phytase from the fungus Aspergillus aculeatus RCEF 4894: gene cloning and expression in Pichia pastoris

被引:10
作者
Ma, Zhong-You [1 ,2 ]
Pu, Shun-Chang [1 ]
Jiang, Jing-Jing [1 ]
Huang, Bo [1 ]
Fan, Mei-Zhen [1 ]
Li, Zeng-Zhi [1 ]
机构
[1] Anhui Agr Univ, Anhui Prov Key Lab Microbial Pest Control, Hefei 230036, Peoples R China
[2] Anhui Sci & Technol Univ, Dept Biol, Bengbu 233100, Peoples R China
关键词
Phytase; High thermostability; Broad pH optima; Aspergillus aculeatus; HEAT-STABLE PHYTASE; CRYSTAL-STRUCTURE; NIGER PHYTASE; FUMIGATUS; PH; PURIFICATION; ENVIRONMENT; NUTRITION; YEAST;
D O I
10.1007/s11274-010-0506-4
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
A novel gene of thermostable phytase, phyA, was isolated by polymerase chain reaction (PCR) techniques from Aspergillus aculeatus RCEF 4894. The full-length phyA gene comprises 1,404 bp and encodes 467 amino-acid residues, including a 19-residue putative N-terminal signal peptide. The phytase of A. aculeatus was a novel addition to the histidine-acid phosphatase family, as evidenced by both the conserved motifs RHGXRXP and HD in the amino-acid sequence, and 3D structure models. The recombinant phytase was overexpressed in Pichia pastoris, and its specific activity reached 3,000 U mL(-1) at the optimum pH of 5.5. This recombinant, thermostable phytase was able to withstand temperatures of up to 90 A degrees C for 10 min, with a loss of only 13.9% of initial enzymatic activity, and showed high activity with phytic-acid sodium salt at a pH range of 2.5-6.5. The broad pH optima and high thermostability of the phytase makes it a promising candidate for feed-pelleting applications.
引用
收藏
页码:679 / 686
页数:8
相关论文
共 29 条
[1]   The SWISS-MODEL workspace: a web-based environment for protein structure homology modelling [J].
Arnold, K ;
Bordoli, L ;
Kopp, J ;
Schwede, T .
BIOINFORMATICS, 2006, 22 (02) :195-201
[2]   A novel staining method for detecting phytase activity [J].
Bae, HD ;
Yanke, LJ ;
Cheng, KJ ;
Selinger, LB .
JOURNAL OF MICROBIOLOGICAL METHODS, 1999, 39 (01) :17-22
[3]   Phytate: impact on environment and human nutrition. A challenge for molecular breeding [J].
Bohn, Lisbeth ;
Meyer, Anne S. ;
Rasmussen, Soren K. .
JOURNAL OF ZHEJIANG UNIVERSITY-SCIENCE B, 2008, 9 (03) :165-191
[4]   Phytase production by the thermophilic fungus Rhizomucor pusillus [J].
Chadha, BS ;
Harmeet, G ;
Mandeep, M ;
Saini, HS ;
Singh, N .
WORLD JOURNAL OF MICROBIOLOGY & BIOTECHNOLOGY, 2004, 20 (01) :105-109
[5]   Molecular cloning of a phytase gene (phy M) from Pseudomonas syringae MOK1 [J].
Cho, J ;
Lee, C ;
Kang, S ;
Lee, J ;
Lee, H ;
Bok, J ;
Woo, J ;
Moon, Y ;
Choi, Y .
CURRENT MICROBIOLOGY, 2005, 51 (01) :11-15
[6]   Quantification of MYCN, DDX1, and NAG gene copy number in neuroblastoma using a real-time quantitative PCR assay [J].
De Preter, K ;
Speleman, F ;
Combaret, V ;
Lunec, J ;
Laureys, G ;
Eussen, BHJ ;
Francotte, N ;
Board, J ;
Pearson, ADJ ;
De Paepe, A ;
Van Roy, N ;
Vandesompele, J .
MODERN PATHOLOGY, 2002, 15 (02) :159-166
[7]   Phytase: Sources, preparation and exploitation [J].
Dvorakova, J .
FOLIA MICROBIOLOGICA, 1998, 43 (04) :323-338
[8]   Screening of fungi for phytase production [J].
Gargova, S ;
Roshkova, Z ;
Vancheva, G .
BIOTECHNOLOGY TECHNIQUES, 1997, 11 (04) :221-224
[9]   Production and purification of a novel thermostable phytase by Pichia pastoris FPHY34 [J].
Guo, Mei-Jin ;
Zhuang, Ying-Ping ;
Chu, Ju ;
Zhang, Si-Liang ;
Xiongc, Ai-Sheng ;
Pengc, Ri-He ;
Yaoc, Quan-Hong .
PROCESS BIOCHEMISTRY, 2007, 42 (12) :1660-1665
[10]  
Han YM, 1999, APPL ENVIRON MICROB, V65, P1915