A regularity criterion for the 3D magneto-micropolar fluid equations in Triebel-Lizorkin spaces

被引:40
作者
Zhang, Zujin [1 ]
Yao, Zheng-An [1 ]
Wang, Xiaofeng [2 ]
机构
[1] Sun Yat Sen Univ, Dept Math, Guangzhou 510275, Guangdong, Peoples R China
[2] Guangzhou Univ, Coll Math, Guangzhou 510006, Guangdong, Peoples R China
关键词
Magneto-micropolar fluid equations; Conditional regularity; Triebel-Lizorkin spaces; Beal-Kato-Majda criterion; NAVIER-STOKES EQUATIONS; VISCOUS MHD EQUATIONS; WEAK SOLUTIONS; EULER EQUATIONS; UNIQUENESS; TERMS; VORTICITY; EXISTENCE; PRESSURE;
D O I
10.1016/j.na.2010.11.026
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider the regularity criterion for the 3D magneto-micropolar fluid equations in Triebel-Lizorkin spaces. It is proved that if del u is an element of L-p (0, T; <(F)over dot>(0)(q,2q/3)) with 2/p + 3/q = 2, 3/2 < q <= infinity, then the solution remains smooth in (0, T). As a corollary, we obtain the classical Beal-Kato-Majda criterion, that is, the condition del x u is an element of L-1 (0, T; <(B)over dot>(0)(infinity,infinity)), ensures the smoothness of the solution. Crown Copyright (C) 2010 Published by Elsevier Ltd. All rights reserved.
引用
收藏
页码:2220 / 2225
页数:6
相关论文
共 28 条
[1]   REMARKS ON THE BREAKDOWN OF SMOOTH SOLUTIONS FOR THE 3-D EULER EQUATIONS [J].
BEALE, JT ;
KATO, T ;
MAJDA, A .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1984, 94 (01) :61-66
[2]   On the Regularity Criterion of Weak Solution for the 3D Viscous Magneto-Hydrodynamics Equations [J].
Chen, Qionglei ;
Miao, Changxing ;
Zhang, Zhifei .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2008, 284 (03) :919-930
[3]  
DEVEIGA HB, 1995, CHINESE ANN MATH, V16, P407
[4]   Remarks on the blow-up criteria for three-dimensional ideal magnetohydrodynamics equations [J].
Du, Yi ;
Liu, Yan ;
Yao, Zhengan .
JOURNAL OF MATHEMATICAL PHYSICS, 2009, 50 (02)
[5]   Backward uniqueness for parabolic equations [J].
Escauriaza, L ;
Seregin, G ;
Sverak, V .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2003, 169 (02) :147-157
[6]   On regularity criteria for the n-dimensional Navier-Stokes equations in terms of the pressure [J].
Fan, Jishan ;
Jiang, Song ;
Ni, Guoxi .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2008, 244 (11) :2963-2979
[7]   Regularity criteria for the 3D magneto-micropolar fluid equations in the Morrey-Campanato space [J].
Gala, Sadek .
NODEA-NONLINEAR DIFFERENTIAL EQUATIONS AND APPLICATIONS, 2010, 17 (02) :181-194
[8]   NOTE ON EXISTENCE AND UNIQUENESS OF SOLUTIONS OF MICROPOLAR FLUID EQUATIONS [J].
GALDI, GP ;
RIONERO, S .
INTERNATIONAL JOURNAL OF ENGINEERING SCIENCE, 1977, 15 (02) :105-108
[9]   On the regularity of weak solutions to the magnetohydrodynamic equations [J].
He, C ;
Xin, ZP .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2005, 213 (02) :235-254
[10]   One component regularity for the Navier-Stokes equations [J].
Kukavica, I ;
Ziane, M .
NONLINEARITY, 2006, 19 (02) :453-469