Correlation of plasma clearance of 54 extensively metabolized drugs between humans and rats: Mean allometric coefficient of 0.66

被引:47
作者
Chiou, WL [1 ]
Robbie, G [1 ]
Chung, SM [1 ]
Wu, TC [1 ]
Ma, C [1 ]
机构
[1] Univ Illinois, Coll Pharm, Dept Pharmaceut & Pharmacodynam MC 865, Chicago, IL 60612 USA
关键词
plasma clearance; unbound plasma clearance; interspecies scale-up in plasma clearance; allometric analysis; pharmacokinetics; rat vs. human;
D O I
10.1023/A:1011974226596
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Purpose. To evaluate the distribution of allometric exponents for relationship of total plasma clearance of 54 extensively metabolized drugs, with wide-ranging linear clearance values, between humans and rats, to provide a rationale for the observed data, and to discuss potential significance of the findings. Methods. Human and rat plasma clearance values of 54 drugs with markedly different physicochemical properties were obtained from the literature. Standard allometric analysis was performed for each drug using both rat and human data. Unbound vs. total plasma clearances were obtained for 15 our of 53 drugs and their correlations between humans and rats were compared. Results. The mean +/- SD of the allometric exponent for the 54 drugs studied is 0.660 +/- 0.190. The median clearance ratio based on unit body weight is 7.41 and the median exponent ii; 0.645. Excluding two outliers the correlation coefficient of plasma clearance between humans and rats was 0.745 (p < 0.0001). For the 15 drugs, use of unbound plasma clearance approach seems to significantly improve the correlation coefficient compared to total plasma clearance (0.940 vs. 0.841). Conclusions. The present study indicates that on average, humans and rats may eliminate extensively metabolized drugs at a rate similar to that expected from the allometric or body surface area relationship of basal metabolic rate between the two species. A simple statistical distribution hypothesis is used to rationalize the species difference in plasma drug clearance. Rat may serve as an useful animal model to predict (unbound) plasma clearance of drugs in humans.
引用
收藏
页码:1474 / 1479
页数:6
相关论文
共 31 条