On a class of nonhomogeneous equations of Henon-type: Symmetry breaking and non radial solutions

被引:0
作者
Assuncao, Ronaldo Brasileiro [3 ]
Miyagaki, Olimpio Hiroshi [1 ]
Pereira, Gilberto de Assis [3 ]
Rodrigues, Bruno Mendes [2 ]
机构
[1] Univ Fed Juiz de Fora, Dept Matemat, BR-36036000 Juiz De Fora, MG, Brazil
[2] Univ Fed Ouro Preto, Dept Matemat, BR-35400000 Ouro Preto, MG, Brazil
[3] Univ Fed Minas Gerais, Dept Matemat, BR-30123970 Belo Horizonte, MG, Brazil
关键词
Henon equation; Degenerate operator; Non radial solutions; POSITIVE SOLUTIONS; GROUND-STATES;
D O I
10.1016/j.na.2017.09.015
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this work we study the following Henon-type equation {-div (|del u|(p) (2)del u/|x|(ap)) = |x|(beta)f(u), in B; u > 0, in B; u = 0, on partial derivative B; where B := {x is an element of R-N; |x| < 1} is a ball centered at the origin, the parameters verify the inequalities 0 <= a < N-p/p, N >= 4, beta > 0, 2 = p < Np+p beta/N-p(a+1), and the nonlinearity f is nonhomogeneous. By minimization on the Nehari manifold, we prove that for large values of the parameter beta there is a symmetry breaking and non radial solutions appear. (C) 2017 Elsevier Ltd. All rights reserved.
引用
收藏
页码:102 / 120
页数:19
相关论文
共 20 条