Exponential metric represents a traversable wormhole

被引:52
作者
Boonserm, Petarpa [1 ,2 ]
Ngampitipan, Tritos [3 ]
Simpson, Alex [4 ]
Visser, Matt [4 ]
机构
[1] Chulalongkorn Univ, Fac Sci, Dept Math & Comp Sci, Bangkok 10330, Thailand
[2] Minist Educ, Thailand Ctr Excellence Phys, Bangkok 10400, Thailand
[3] Chandrakasem Rajabhat Univ, Fac Sci, Bangkok 10900, Thailand
[4] Victoria Univ Wellington, Sch Math & Stat, POB 600, Wellington 6140, New Zealand
来源
PHYSICAL REVIEW D | 2018年 / 98卷 / 08期
关键词
ENERGY CONDITION; SCALAR FIELDS; MODEL;
D O I
10.1103/PhysRevD.98.084048
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
For various reasons, a number of authors have mooted an "exponential form" for the spacetime metric ds(2) = -e(-2m/r)dt(2) + e(+2m/r){dr(2) +r(2)(d theta(2) + sin(2)theta d phi(2))}.While the weak-field behavior matches nicely with weak-field general relativity, and so also automatically matches nicely with the Newtonian gravity limit, the strong-field behavior is markedly different. Proponents of these exponential metrics have very much focused on the absence of horizons-it is certainly clear that this geometry does not represent a black hole. However, the proponents of these exponential metrics have failed to note that instead one is dealing with a traversable wormhole-with all of the interesting and potentially problematic features that such an observation raises. If one wishes to replace all the black hole candidates astronomers have identified with traversable wormholes, then certainly a careful phenomenological analysis of this quite radical proposal should be carried out.
引用
收藏
页数:13
相关论文
共 76 条
[31]   Geometric structure of the generic static traversable wormhole throat [J].
Hochberg, D ;
Visser, M .
PHYSICAL REVIEW D, 1997, 56 (08) :4745-4755
[32]   Cosmological test of the Yilmaz theory of gravity [J].
Ibison, M .
CLASSICAL AND QUANTUM GRAVITY, 2006, 23 (03) :577-589
[33]  
Ibison M, 2006, AIP CONF PROC, V822, P181, DOI 10.1063/1.2189135
[34]   REALITY OF SCHWARZSCHILD SINGULARITY [J].
JANIS, AI ;
NEWMAN, ET ;
WINICOUR, J .
PHYSICAL REVIEW LETTERS, 1968, 20 (16) :878-&
[35]   Quantifying energy condition violations in traversable wormholes [J].
Kar, S ;
Dadhich, N ;
Visser, M .
PRAMANA-JOURNAL OF PHYSICS, 2004, 63 (04) :859-864
[36]   Morris-Thorne wormholes with a cosmological constant [J].
Lemos, JPS ;
Lobo, FSN ;
de Oliveira, SQ .
PHYSICAL REVIEW D, 2003, 68 (06)
[37]   Phantom energy traversable wormholes [J].
Lobo, FSN .
PHYSICAL REVIEW D, 2005, 71 (08) :1-8
[38]   Simpler than vacuum: Antiscalar alternatives to black holes [J].
Makukov, Maxim A. ;
Mychelkin, Eduard G. .
PHYSICAL REVIEW D, 2018, 98 (06)
[39]   Diving into traversable wormholes [J].
Maldacena, Juan ;
Stanford, Douglas ;
Yang, Zhenbin .
FORTSCHRITTE DER PHYSIK-PROGRESS OF PHYSICS, 2017, 65 (05)
[40]  
Martinis M., ARXIV10096017