Spatial decay estimates for the Fochheimer equations interfacing with a Darcy equations

被引:1
|
作者
Wang, Ze [1 ]
Zhang, Yan [2 ]
Shi, Jincheng [3 ]
Ouyang, Baiping [3 ]
机构
[1] Guangdong Univ Finance, Dept Comp Sci, Yingfu Rd, Guangzhou 510521, Peoples R China
[2] Guangdong Teachers Coll Foreign Language & Arts, Dept Publ Infrastruct, Longdong East Rd, Guangzhou 510521, Peoples R China
[3] Guangzhou Huashang Coll, Dept Appl Math, Huashang Rd, Guangzhou 511300, Peoples R China
来源
AIMS MATHEMATICS | 2021年 / 6卷 / 11期
基金
中国国家自然科学基金;
关键词
Saint-Venant's principle; decay estimates; Forchheimer fluid; Darcy fluid; DOUBLE-DIFFUSIVE CONVECTION; CONTINUOUS DEPENDENCE; POROUS-MEDIUM; STRUCTURAL STABILITY; VISCOUS-FLUID; BRINKMAN; FLOW; CONVERGENCE; TEMPERATURE; SIMULATION;
D O I
10.3934/math.2021728
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Spatial decay estimates for the Fochheimer fluid interfacing with a Darcy flow in a semi-infinite pipe was studied. The exponential decay result can be obtained by integrating a first order differential inequality. The result can be seen as the usage of Saint-Venant's principle for the interfacing fluids.
引用
收藏
页码:12632 / 12649
页数:18
相关论文
共 50 条