Spatial decay estimates for the Fochheimer equations interfacing with a Darcy equations

被引:1
|
作者
Wang, Ze [1 ]
Zhang, Yan [2 ]
Shi, Jincheng [3 ]
Ouyang, Baiping [3 ]
机构
[1] Guangdong Univ Finance, Dept Comp Sci, Yingfu Rd, Guangzhou 510521, Peoples R China
[2] Guangdong Teachers Coll Foreign Language & Arts, Dept Publ Infrastruct, Longdong East Rd, Guangzhou 510521, Peoples R China
[3] Guangzhou Huashang Coll, Dept Appl Math, Huashang Rd, Guangzhou 511300, Peoples R China
来源
AIMS MATHEMATICS | 2021年 / 6卷 / 11期
基金
中国国家自然科学基金;
关键词
Saint-Venant's principle; decay estimates; Forchheimer fluid; Darcy fluid; DOUBLE-DIFFUSIVE CONVECTION; CONTINUOUS DEPENDENCE; POROUS-MEDIUM; STRUCTURAL STABILITY; VISCOUS-FLUID; BRINKMAN; FLOW; CONVERGENCE; TEMPERATURE; SIMULATION;
D O I
10.3934/math.2021728
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Spatial decay estimates for the Fochheimer fluid interfacing with a Darcy flow in a semi-infinite pipe was studied. The exponential decay result can be obtained by integrating a first order differential inequality. The result can be seen as the usage of Saint-Venant's principle for the interfacing fluids.
引用
收藏
页码:12632 / 12649
页数:18
相关论文
共 50 条
  • [1] Structural stability for the Boussinesq equations interfacing with Darcy equations in a bounded domain
    Li, Yuanfei
    Zhang, Shuanghu
    Lin, Changhao
    BOUNDARY VALUE PROBLEMS, 2021, 2021 (01)
  • [2] Structural stability for the Forchheimer equations interfacing with a Darcy fluid in a bounded region in R3
    Shi, Jincheng
    Liu, Yan
    BOUNDARY VALUE PROBLEMS, 2021, 2021 (01):
  • [3] Structural stability for the Boussinesq equations interfacing with Darcy equations in a bounded domain
    Yuanfei Li
    Shuanghu Zhang
    Changhao Lin
    Boundary Value Problems, 2021
  • [4] Decay estimates for the Brinkman-Forchheimer equations in a semi-infinite pipe
    Li, Yuanfei
    Liu, Yan
    Luo, Shiguang
    Lin, Changhao
    ZAMM-ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK, 2012, 92 (02): : 160 - 176
  • [5] Spatial decay bound and structural stability for the double-diffusion perturbation equations
    Li, Yuanfei
    Chen, Xuejiao
    MATHEMATICAL BIOSCIENCES AND ENGINEERING, 2023, 20 (02) : 2998 - 3022
  • [6] Decay estimates for a class of wave equations
    Guo, Zihua
    Peng, Lizhong
    Wang, Baoxiang
    JOURNAL OF FUNCTIONAL ANALYSIS, 2008, 254 (06) : 1642 - 1660
  • [7] Spatial decay estimates for the Forchheimer fluid equations in a semi-infinite cylinder
    Xuejiao Chen
    Yuanfei Li
    Applications of Mathematics, 2023, 68 : 643 - 660
  • [8] Decay estimates for isentropic compressible Navier-Stokes equations in bounded domain
    Fang, Daoyuan
    Zi, Ruizhao
    Zhang, Ting
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2012, 386 (02) : 939 - 947
  • [9] SPATIAL DECAY ESTIMATES FOR THE FORCHHEIMER FLUIDEQUATIONS IN A SEMI-INFINITE CYLINDER
    Chen, Xuejiao
    Li, Yuanfei
    APPLICATIONS OF MATHEMATICS, 2023, 68 (05) : 643 - 660
  • [10] Decay estimates in time for fractional evolution equations
    Achache, Mahdi
    ZEITSCHRIFT FUR ANALYSIS UND IHRE ANWENDUNGEN, 2023, 42 (3-4): : 471 - 482