Center-based clustering of categorical data using kernel smoothing methods

被引:1
作者
Yan, Xuanhui [1 ]
Chen, Lifei [1 ]
Guo, Gongde [1 ]
机构
[1] Fujian Normal Univ, Sch Math & Informat, Fuzhou 350007, Fujian, Peoples R China
基金
中国国家自然科学基金;
关键词
ALGORITHM;
D O I
10.1007/s11704-018-7186-x
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
引用
收藏
页码:1032 / 1034
页数:3
相关论文
共 5 条
  • [1] A novel attribute weighting algorithm for clustering high-dimensional categorical data
    Bai, Liang
    Liang, Jiye
    Dang, Chuangyin
    Cao, Fuyuan
    [J]. PATTERN RECOGNITION, 2011, 44 (12) : 2843 - 2861
  • [2] Data clustering: A review
    Jain, AK
    Murty, MN
    Flynn, PJ
    [J]. ACM COMPUTING SURVEYS, 1999, 31 (03) : 264 - 323
  • [3] An entropy weighting k-means algorithm for subspace clustering of high-dimensional sparse data
    Jing, Liping
    Ng, Michael K.
    Huang, Joshua Zhexue
    [J]. IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, 2007, 19 (08) : 1026 - 1041
  • [4] Cross-validation and the estimation of probability distributions with categorical data
    Ouyang, D
    Li, Q
    Racine, J
    [J]. JOURNAL OF NONPARAMETRIC STATISTICS, 2006, 18 (01) : 69 - 100
  • [5] FCM-based model selection algorithms for determining the number of clusters
    Sun, HJ
    Wang, SR
    Jiang, QS
    [J]. PATTERN RECOGNITION, 2004, 37 (10) : 2027 - 2037