Migrating Planets into Ultra-short-period Orbits during Episodic Accretion Events

被引:10
作者
Becker, Juliette C. [1 ]
Batygin, Konstantin [1 ]
Adams, Fred C. [2 ,3 ]
机构
[1] CALTECH, Div Geol & Planetary Sci, Pasadena, CA 91125 USA
[2] Univ Michigan, Dept Phys, Ann Arbor, MI 48109 USA
[3] Univ Michigan, Dept Astron, Ann Arbor, MI 48109 USA
关键词
HOT-JUPITER; MAGNETIC-FIELDS; ROCKY PLANET; SUPER-EARTH; DISK; STARS; TORQUES; INSTABILITIES; COROTATION; DISCOVERY;
D O I
10.3847/1538-4357/ac111e
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
Ultra-short-period (USP) planets reside inside the expected truncation radius for typical T Tauri disks. As a result, their current orbital locations require an explanation beyond standard disk migration or in situ formation. Modern theories of planet-disk interactions indicate that once a planet migrates close to the disk's inner truncation radius, Type I torques vanish or switch direction, depending on the stellar and disk conditions, so that the planet is expected to stop its orbital decay and become trapped. In this work, we show that that magnetically driven sub-Keplerian gas flow in the inner disk can naturally counteract these effects and produce systems with USP planets at their observed orbital radii. The sub-Keplerian gas flow provides a headwind to small planets, and the resulting torque can overcome the effects of outward Type I migration near the corotation radius. For suitable disk and planet parameters, the torques due to the sub-Keplerian gas flow lead to inward migration on a rapid timescale. Over the time span of an FU Ori outburst, which moves the disk truncation radius inward, the rapid headwind migration can place planets in USP orbits. The combination of headwind migration and FU Ori outbursts thus provides a plausible mechanism to move small planets from a = 0.05-0.1 au down to a = 0.01-0.02 au. This effect is amplified for low-mass planets, consistent with existing observations.
引用
收藏
页数:9
相关论文
共 113 条
  • [1] Adams E.R., 2020, PSJ, V2, P152, DOI [10.3847/PSJ/ac0ea0, DOI 10.3847/PSJ/AC0EA0]
  • [2] MIGRATION OF EXTRASOLAR PLANETS: EFFECTS FROM X-WIND ACCRETION DISKS
    Adams, Fred C.
    Cai, Mike J.
    Lizano, Susana
    [J]. ASTROPHYSICAL JOURNAL LETTERS, 2009, 702 (02): : L182 - L186
  • [3] GENERAL ANALYSIS OF TYPE I PLANETARY MIGRATION WITH STOCHASTIC PERTURBATIONS
    Adams, Fred C.
    Bloch, Anthony M.
    [J]. ASTROPHYSICAL JOURNAL, 2009, 701 (02) : 1381 - 1397
  • [4] Higher Compact Multiple Occurrence around Metal-poor M-dwarfs and Late-K-dwarfs
    Anderson, Sophie G.
    Dittmann, Jason A.
    Ballard, Sarah
    Bedell, Megan
    [J]. ASTRONOMICAL JOURNAL, 2021, 161 (04)
  • [5] Episodic accretion in magnetically layered protoplanetary discs
    Armitage, PJ
    Livio, M
    Pringle, JE
    [J]. MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2001, 324 (03) : 705 - 711
  • [6] A remnant planetary core in the hot-Neptune desert
    Armstrong, David J.
    Lopez, Theo A.
    Adibekyan, Vardan
    Booth, Richard A.
    Bryant, Edward M.
    Collins, Karen A.
    Deleuil, Magali
    Emsenhuber, Alexandre
    Huang, Chelsea X.
    King, George W.
    Lillo-Box, Jorge
    Lissauer, Jack J.
    Matthews, Elisabeth
    Mousis, Olivier
    Nielsen, Louise D.
    Osborn, Hugh
    Otegi, Jon
    Santos, Nuno C.
    Sousa, Sergio G.
    Stassun, Keivan G.
    Veras, Dimitri
    Ziegler, Carl
    Acton, Jack S.
    Almenara, Jose M.
    Anderson, David R.
    Barrado, David
    Barros, Susana C. C.
    Bayliss, Daniel
    Belardi, Claudia
    Bouchy, Francois
    Briceno, Cesar
    Brogi, Matteo
    Brown, David J. A.
    Burleigh, Matthew R.
    Casewell, Sarah L.
    Chaushev, Alexander
    Ciardi, David R.
    Collins, Kevin I.
    Colon, Knicole D.
    Cooke, Benjamin F.
    Crossfield, Ian J. M.
    Diaz, Rodrigo F.
    Mena, Elisa Delgado
    Demangeon, Olivier D. S.
    Dorn, Caroline
    Dumusque, Xavier
    Eigmueller, Philipp
    Fausnaugh, Michael
    Figueira, Pedro
    Gan, Tianjun
    [J]. NATURE, 2020, 583 (7814) : 39 - +
  • [7] LOCAL STUDY OF ACCRETION DISKS WITH A STRONG VERTICAL MAGNETIC FIELD: MAGNETOROTATIONAL INSTABILITY AND DISK OUTFLOW
    Bai, Xue-Ning
    Stone, James M.
    [J]. ASTROPHYSICAL JOURNAL, 2013, 767 (01)
  • [8] Trapping planets in an evolving protoplanetary disk: preferred time, locations, and planet mass
    Baillie, K.
    Charnoz, S.
    Pantin, E.
    [J]. ASTRONOMY & ASTROPHYSICS, 2016, 590
  • [9] Rocky super-Earths or waterworlds: the interplay of planet migration, pebble accretion, and disc evolution
    Bitsch, Bertram
    Raymond, Sean N.
    Izidoro, Andre
    [J]. ASTRONOMY & ASTROPHYSICS, 2019, 624
  • [10] The structure of protoplanetary discs around evolving young stars
    Bitsch, Bertram
    Johansen, Anders
    Lambrechts, Michiel
    Morbidelli, Alessandro
    [J]. ASTRONOMY & ASTROPHYSICS, 2015, 575