ON THE WELL-POSEDNESS OF PARABOLIC EQUATIONS OF NAVIER-STOKES TYPE WITH BMO-1 DATA

被引:5
作者
Auscher, Pascal [1 ]
Frey, Dorothee [1 ]
机构
[1] Univ Paris 11, CNRS, UMR 8628, Lab Math, F-91405 Orsay, France
基金
澳大利亚研究理事会;
关键词
Navier-Stokes equations; tent spaces; maximal regularity; Hardy spaces; 2ND-ORDER ELLIPTIC-OPERATORS; HEAT KERNEL; RIEMANNIAN-MANIFOLDS; FUNCTION-SPACES; HARDY-SPACES; TENT SPACES; L-P; REGULARITY; INFINITY; DOMAINS;
D O I
10.1017/S1474748015000158
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We develop a strategy making extensive use of tent spaces to study parabolic equations with quadratic nonlinearities as for the Navier Stokes system. We begin with a new proof of the well-known result of Koch and Tataru on the well-posedness of Navier Stokes equations in R-n with small initial data in BMO-1(R-n). We then study another model where neither pointwise kernel bounds nor self-adjointness are available.
引用
收藏
页码:947 / 985
页数:39
相关论文
共 43 条
[1]  
[Anonymous], 2005, C R MATH ACAD SCI PA
[2]  
[Anonymous], 2002, CHAPMAN HALL CRC RES
[3]  
[Anonymous], 2001, FOURIER ANAL, DOI DOI 10.1090/GSM/029
[4]  
[Anonymous], 1998, ASTERISQUE
[5]   The solution of the Kato square root problem for second order elliptic operators on Rn [J].
Auscher, P ;
Hofmann, S ;
Lacey, M ;
McIntosh, A ;
Tchamitchian, P .
ANNALS OF MATHEMATICS, 2002, 156 (02) :633-654
[6]   Regularity theorems and heat kernel for elliptic operators [J].
Auscher, P .
JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 1996, 54 :284-296
[7]  
Auscher P., 2014, ARXIV14035367MATHCA
[8]  
Auscher P., 2011, PROGR NONLINEAR DIFF, V80, P45
[9]  
Auscher P., 2002, UNPUB
[10]  
Auscher P., 1999, ARXIV08121158MATHAP