Covariant Lyapunov vectors of chaotic Rayleigh-Benard convection

被引:21
|
作者
Xu, M. [1 ]
Paul, M. R. [1 ]
机构
[1] Virginia Tech, Dept Mech Engn, Blacksburg, VA 24061 USA
基金
美国国家科学基金会;
关键词
EXPONENTS; SYSTEMS; ATTRACTORS; TURBULENCE; DIMENSION;
D O I
10.1103/PhysRevE.93.062208
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
We explore numerically the high-dimensional spatiotemporal chaos of Rayleigh-Benard convection using covariant Lyapunov vectors. We integrate the three-dimensional and time-dependent Boussinesq equations for a convection layer in a shallow square box geometry with an aspect ratio of 16 for very long times and for a range of Rayleigh numbers. We simultaneously integrate many copies of the tangent space equations in order to compute the covariant Lyapunov vectors. The dynamics explored has fractal dimensions of 20 less than or similar to D-lambda less than or similar to 50, and we compute on the order of 150 covariant Lyapunov vectors. We use the covariant Lyapunov vectors to quantify the degree of hyperbolicity of the dynamics and the degree of Oseledets splitting and to explore the temporal and spatial dynamics of the Lyapunov vectors. Our results indicate that the chaotic dynamics of Rayleigh-Benard convection is nonhyperbolic for all of the Rayleigh numbers we have explored. Our results yield that the entire spectrum of covariant Lyapunov vectors that we have computed are tangled as indicated by near tangencies with neighboring vectors. A closer look at the spatiotemporal features of the Lyapunov vectors suggests contributions from structures at two different length scales with differing amounts of localization.
引用
收藏
页数:12
相关论文
共 50 条
  • [21] Vapor condensation in Rayleigh-Benard convection
    Li, Min
    Zhang, Yang
    Liu, Haihu
    Wang, Yuan
    Yang, Bin
    PHYSICS OF FLUIDS, 2021, 33 (01)
  • [22] Bursting dynamics in Rayleigh-Benard convection
    Dan, Surajit
    Ghosh, Manojit
    Nandukumar, Yada
    Dana, Syamal K.
    Pal, Pinaki
    EUROPEAN PHYSICAL JOURNAL-SPECIAL TOPICS, 2017, 226 (09): : 2089 - 2099
  • [23] The turbulent regimes of Rayleigh-Benard convection
    Chavanne, X
    Chilla, F
    Castaing, B
    Chabaud, B
    Hebral, B
    Roche, P
    ADVANCES IN TURBULENCE VII, 1998, 46 : 461 - 464
  • [24] SURFACE DEFLECTION IN RAYLEIGH-BENARD CONVECTION
    JIMENEZFERNANDEZ, J
    GARCIASANZ, J
    JOURNAL DE PHYSIQUE, 1989, 50 (05): : 521 - 527
  • [25] TEMPERATURE MODULATION IN RAYLEIGH-BENARD CONVECTION
    Singh, Jitender
    Bajaj, Renu
    ANZIAM JOURNAL, 2008, 50 (02): : 231 - 245
  • [26] SPATIOTEMPORAL INTERMITTENCY IN RAYLEIGH-BENARD CONVECTION
    CILIBERTO, S
    BIGAZZI, P
    PHYSICAL REVIEW LETTERS, 1988, 60 (04) : 286 - 289
  • [27] EXTERNAL MODULATION OF RAYLEIGH-BENARD CONVECTION
    NIEMELA, JJ
    DONNELLY, RJ
    PHYSICAL REVIEW LETTERS, 1987, 59 (21) : 2431 - 2434
  • [28] Asymmetries in Turbulent Rayleigh-Benard Convection
    du Puits, Ronald
    Resagk, Christian
    Thess, Andre
    PROGRESS IN TURBULENCE III, 2010, 131 : 179 - 182
  • [29] Heat flux in Rayleigh-Benard convection
    Shibata, H
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2005, 352 (2-4) : 335 - 346
  • [30] ON ULTIMATE REGIME OF RAYLEIGH-BENARD CONVECTION
    Palymskiy, Igor
    COMPUTATIONAL THERMAL SCIENCES, 2015, 7 (04): : 339 - 344