Covariant Lyapunov vectors of chaotic Rayleigh-Benard convection

被引:21
|
作者
Xu, M. [1 ]
Paul, M. R. [1 ]
机构
[1] Virginia Tech, Dept Mech Engn, Blacksburg, VA 24061 USA
基金
美国国家科学基金会;
关键词
EXPONENTS; SYSTEMS; ATTRACTORS; TURBULENCE; DIMENSION;
D O I
10.1103/PhysRevE.93.062208
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
We explore numerically the high-dimensional spatiotemporal chaos of Rayleigh-Benard convection using covariant Lyapunov vectors. We integrate the three-dimensional and time-dependent Boussinesq equations for a convection layer in a shallow square box geometry with an aspect ratio of 16 for very long times and for a range of Rayleigh numbers. We simultaneously integrate many copies of the tangent space equations in order to compute the covariant Lyapunov vectors. The dynamics explored has fractal dimensions of 20 less than or similar to D-lambda less than or similar to 50, and we compute on the order of 150 covariant Lyapunov vectors. We use the covariant Lyapunov vectors to quantify the degree of hyperbolicity of the dynamics and the degree of Oseledets splitting and to explore the temporal and spatial dynamics of the Lyapunov vectors. Our results indicate that the chaotic dynamics of Rayleigh-Benard convection is nonhyperbolic for all of the Rayleigh numbers we have explored. Our results yield that the entire spectrum of covariant Lyapunov vectors that we have computed are tangled as indicated by near tangencies with neighboring vectors. A closer look at the spatiotemporal features of the Lyapunov vectors suggests contributions from structures at two different length scales with differing amounts of localization.
引用
收藏
页数:12
相关论文
共 50 条
  • [1] Chaotic Rayleigh-Benard convection with finite sidewalls
    Xu, M.
    Paul, M. R.
    PHYSICAL REVIEW E, 2018, 98 (01)
  • [2] Chaotic travelling rolls in Rayleigh-Benard convection
    Paul, Supriyo
    Kumar, Krishna
    Verma, Mahendra K.
    Carati, Daniele
    De, Arnab K.
    Eswaran, Vinayak
    PRAMANA-JOURNAL OF PHYSICS, 2010, 74 (01): : 75 - 82
  • [3] Correlations between the leading Lyapunov vector and pattern defects for chaotic Rayleigh-Benard convection
    Levanger, R.
    Xu, M.
    Cyranka, J.
    Schatz, M. F.
    Mischaikow, K.
    Paul, M. R.
    CHAOS, 2019, 29 (05)
  • [4] Length scale of a chaotic element in Rayleigh-Benard convection
    Karimi, A.
    Paul, M. R.
    PHYSICAL REVIEW E, 2012, 86 (06)
  • [5] RAYLEIGH-BENARD CONVECTION
    BERGE, P
    DUBOIS, M
    CONTEMPORARY PHYSICS, 1984, 25 (06) : 535 - 582
  • [6] Lyapunov exponents for small aspect ratio Rayleigh-Benard convection
    Scheel, J. D.
    Cross, M. C.
    PHYSICAL REVIEW E, 2006, 74 (06):
  • [7] Spatiotemporal dynamics of the covariant Lyapunov vectors of chaotic convection
    Xu, M.
    Paul, M. R.
    PHYSICAL REVIEW E, 2018, 97 (03)
  • [8] Scaling in Rayleigh-Benard convection
    Lindborg, Erik
    JOURNAL OF FLUID MECHANICS, 2023, 956
  • [9] DYNAMICS OF THE RAYLEIGH-BENARD CONVECTION
    PLATTEN, JK
    LEGROS, JC
    JOURNAL OF NON-EQUILIBRIUM THERMODYNAMICS, 1980, 5 (04) : 243 - 254
  • [10] Multiphase Rayleigh-Benard convection
    Oresta, Paolo
    Fornarelli, Francesco
    Prosperetti, Andrea
    MECHANICAL ENGINEERING REVIEWS, 2014, 1 (01):