Learning spatiotemporal trajectories from manifold-valued longitudinal data

被引:0
作者
Schiratti, Jean-Baptiste [1 ,2 ]
Allassonniere, Stephanie [2 ]
Colliot, Olivier [1 ]
Durrleman, Stanley [1 ]
机构
[1] UPMC Univ Paris 06, Sorbonne Univ,Inserm, INRIA Paris,Inst Cerveau & Moelle Epiniere,ICM, U1127,CNRS,UMR 7225,UMR S 1127,ARAMIS Lab, F-75013 Paris, France
[2] Ecole Polytech, CMAP, Palaiseau, France
来源
ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 28 (NIPS 2015) | 2015年 / 28卷
关键词
MAXIMUM-LIKELIHOOD; ALZHEIMERS-DISEASE; PROGRESSION; MODELS;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We propose a Bayesian mixed-effects model to learn typical scenarios of changes from longitudinal manifold-valued data, namely repeated measurements of the same objects or individuals at several points in time. The model allows to estimate a group-average trajectory in the space of measurements. Random variations of this trajectory result from spatiotemporal transformations, which allow changes in the direction of the trajectory and in the pace at which trajectories are followed. The use of the tools of Riemannian geometry allows to derive a generic algorithm for any kind of data with smooth constraints, which lie therefore on a Riemannian manifold. Stochastic approximations of the Expectation-Maximization algorithm is used to estimate the model parameters in this highly non-linear setting. The method is used to estimate a data-driven model of the progressive impairments of cognitive functions during the onset of Alzheimer's disease. Experimental results show that the model correctly put into correspondence the age at which each individual was diagnosed with the disease, thus validating the fact that it effectively estimated a normative scenario of disease progression. Random effects provide unique insights into the variations in the ordering and timing of the succession of cognitive impairments across different individuals.
引用
收藏
页数:9
相关论文
共 17 条
[1]   Construction of Bayesian deformable models via a stochastic approximation algorithm: A convergence study [J].
Allassonniere, Stephanie ;
Kuhn, Estelle ;
Trouve, Alain .
BERNOULLI, 2010, 16 (03) :641-678
[2]  
[Anonymous], 2004, Independent component analysis
[3]   STAGING OF ALZHEIMERS-DISEASE-RELATED NEUROFIBRILLARY CHANGES [J].
BRAAK, H ;
BRAAK, E .
NEUROBIOLOGY OF AGING, 1995, 16 (03) :271-278
[4]  
Delyon B, 1999, ANN STAT, V27, P94
[5]   MAXIMUM LIKELIHOOD FROM INCOMPLETE DATA VIA EM ALGORITHM [J].
DEMPSTER, AP ;
LAIRD, NM ;
RUBIN, DB .
JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-METHODOLOGICAL, 1977, 39 (01) :1-38
[6]  
Diggle PJ, 2002, ANAL LONGITUDINAL DA
[7]   Estimating long-term multivariate progression from short-term data [J].
Donohue, Michael C. ;
Jacqmin-Gadda, Helene ;
Le Goff, Melanie ;
Thomas, Ronald G. ;
Raman, Rema ;
Gamst, Anthony C. ;
Beckett, Laurel A. ;
Jack, Clifford R., Jr. ;
Weiner, Michael W. ;
Dartigues, Jean-Francois ;
Aisen, Paul S. .
ALZHEIMERS & DEMENTIA, 2014, 10 (05) :S400-S410
[8]   Toward a Comprehensive Framework for the Spatiotemporal Statistical Analysis of Longitudinal Shape Data [J].
Durrleman, Stanley ;
Pennec, Xavier ;
Trouve, Alain ;
Braga, Jose ;
Gerig, Guido ;
Ayache, Nicholas .
INTERNATIONAL JOURNAL OF COMPUTER VISION, 2013, 103 (01) :22-59
[9]   An event-based model for disease progression and its application in familial Alzheimer's disease and Huntington's disease [J].
Fonteijn, Hubert M. ;
Modat, Marc ;
Clarkson, Matthew J. ;
Barnes, Josephine ;
Lehmann, Manja ;
Hobbs, Nicola Z. ;
Scahill, Rachael I. ;
Tabrizi, Sarah J. ;
Ourselin, Sebastien ;
Fox, Nick C. ;
Alexander, Daniel C. .
NEUROIMAGE, 2012, 60 (03) :1880-1889
[10]   Riemann manifold Langevin and Hamiltonian Monte Carlo methods [J].
Girolami, Mark ;
Calderhead, Ben .
JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-STATISTICAL METHODOLOGY, 2011, 73 :123-214