Using protein-ligand docking to assess the chemical tractability of inhibiting a protein target

被引:8
作者
Ward, Richard A. [1 ]
机构
[1] AstraZeneca, Canc & Infect Discovery, Macclesfield SK10 4TG, Cheshire, England
关键词
Druggability; Ligandability; Protein-ligand docking; DRUG DISCOVERY; IDENTIFICATION; AFFINITY; SITES;
D O I
10.1007/s00894-010-0683-y
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Assessing the difficulty of inhibiting a specific protein by a small molecule can be highly valuable in risk-assessment and prioritization of a new target. In particular, when the disease linkage for a number of targets is broadly similar, being able to identify the most tractable can have a significant impact on informing target selection. With an increasing focus against new and novel protein classes, being able to assess the most likely targets to yield lead-like chemical start points can guide the selection and the lead-generation strategy implemented. This study exploits protein-ligand docking studies on published protein x-ray crystal structures to provide guidance on the feasibility of identifying small molecule inhibitors against a range of targets.
引用
收藏
页码:1833 / 1843
页数:11
相关论文
共 50 条
  • [31] PSOVina: The hybrid particle swarm optimization algorithm for protein-ligand docking
    Ng, Marcus C. K.
    Fong, Simon
    Siu, Shirley W. I.
    JOURNAL OF BIOINFORMATICS AND COMPUTATIONAL BIOLOGY, 2015, 13 (03)
  • [32] Protein-Ligand Docking in the New Millennium - A Retrospective of 10 Years in the Field
    Sousa, S. F.
    Ribeiro, A. J. M.
    Coimbra, J. T. S.
    Neves, R. P. P.
    Martins, S. A.
    Moorthy, N. S. H. N.
    Fernandes, P. A.
    Ramos, M. J.
    CURRENT MEDICINAL CHEMISTRY, 2013, 20 (18) : 2296 - 2314
  • [33] RDPSOVina: the random drift particle swarm optimization for protein-ligand docking
    Li, Jinxing
    Li, Chao
    Sun, Jun
    Palade, Vasile
    JOURNAL OF COMPUTER-AIDED MOLECULAR DESIGN, 2022, 36 (06) : 415 - 425
  • [34] A biased random key genetic algorithm for the protein-ligand docking problem
    Leonhart, Pablo Felipe
    Spieler, Eduardo
    Ligabue-Braun, Rodrigo
    Dorn, Marcio
    SOFT COMPUTING, 2019, 23 (12) : 4155 - 4176
  • [35] GalaxyDock3: Protein-ligand docking that considers the full ligand conformational flexibility
    Yang, Jinsol
    Baek, Minkyung
    Seok, Chaok
    JOURNAL OF COMPUTATIONAL CHEMISTRY, 2019, 40 (31) : 2739 - 2748
  • [36] Genetic algorithm with a crossover elitist preservation mechanism for protein-ligand docking
    Guan, Boxin
    Zhang, Changsheng
    Ning, Jiaxu
    AMB EXPRESS, 2017, 7
  • [37] GalaxyDock2-HEME: Protein-ligand docking for heme proteins
    Lee, Changsoo
    Yang, Jinsol
    Kwon, Sohee
    Seok, Chaok
    JOURNAL OF COMPUTATIONAL CHEMISTRY, 2023, 44 (14) : 1369 - 1380
  • [38] Evaluating Variants of Firefly Algorithm for Ligand Pose Prediction in Protein-ligand Docking Program
    Ao, Meng Chi
    Siu, Shirley W. I.
    PROCEEDINGS OF 2020 12TH INTERNATIONAL CONFERENCE ON BIOINFORMATICS AND BIOMEDICAL TECHNOLOGY, ICBBT 2020, 2020, : 48 - 54
  • [39] MOLS 2.0: software package for peptide modeling and protein-ligand docking
    Paul, D. Sam
    Gautham, N.
    JOURNAL OF MOLECULAR MODELING, 2016, 22 (10)
  • [40] Accelerated flexible protein-ligand docking using Hamiltonian replica exchange with a repulsive biasing potential
    Ostermeir, Katja
    Zacharias, Martin
    PLOS ONE, 2017, 12 (02):