A comprehensive study of the dissolution process of N-oxide based explosives in deep eutectic solvents

被引:3
|
作者
Jia, Jianhui [1 ]
Chen, Jianbo [1 ]
Ding, Huan [1 ,2 ]
Xue, Xianggui [1 ]
Li, Shichun [1 ]
Huang, Jichun [1 ]
Liu, Yu [1 ]
机构
[1] China Acad Engn Phys, Inst Chem Mat, Mianyang 621900, Sichuan, Peoples R China
[2] North Univ China, Sch Environm & Safety Engn, Taiyuan 030051, Peoples R China
关键词
Deep eutectic solvents; 2,6-Diamino-3; 5-Dinitropyrazine-1; oxide; N-oxide based explosives; Improving the solubility; Dissolution process; CHOLINE CHLORIDE-UREA; CELLULOSE DISSOLUTION; SUSTAINABLE SOLVENTS; IONIC LIQUIDS; 2,6-DIAMINO-3,5-DINITROPYRAZINE-1-OXIDE; PERFORMANCE; EFFICIENT; REGENERATION; PRETREATMENT; LLM-105;
D O I
10.1016/j.molliq.2021.117170
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
N-oxide based explosives display better explosive performances than traditional explosives, because of the introduction of N-oxide group with strong hydrogen bonding (H-bonding). However, the strong Hbonding results in poor dissolution of N-oxide based explosives, and thus poses a significant challenge for their potential applications. Deep eutectic solvents (DESs), a new generation of green solvents, display promising dissolution toward strong H-bonding materials in recent years. In this study, 2,6-diamino-3,5-dinitropyrazine-1-oxide (LLM-105) was used as a prototype of N-oxide based explosives to study the dissolution in DESs. The dissolution conditions for LLM-105 were optimized by using different types of DESs. The DES-3-2 based on choline chloride and urea displayed higher dissolving capacity with 0.52 g/100 g at 80 degrees C, which was determined by traditionally gravimetric method. Further, the dissolution process of LLM-105 in DES-3-2 under different temperatures was investigated by comprehensive analysis including ultra-high-performance liquid chromatography, high-resolution mass spectrum and theoretical calculations. The dissolution of LLM-105 under <= 80 degrees C was demonstrated to be real dissolution referring to the formation of Zundel-type complex and Meisenheimer complex between DES-3-2 and LLM-105. Abnormally high solubility of LLM-105 at >80 degrees C was attributed to the self-collapse of its H-bonding network by losing a nitro group and an oxygen of N-oxide group. (C) 2021 Elsevier B.V. All rights reserved.
引用
收藏
页数:10
相关论文
共 50 条
  • [1] Lignin dissolution and lignocellulose pretreatment by carboxylic acid based deep eutectic solvents
    Yu, Haitao
    Xue, Zhimin
    Shi, Ruifen
    Zhou, Fengyi
    Mu, Tiancheng
    INDUSTRIAL CROPS AND PRODUCTS, 2022, 184
  • [2] Imidazole-based deep eutectic solvents for starch dissolution and plasticization
    Zdanowicz, Magdalena
    Spychaj, Tadeusz
    Maka, Honorata
    CARBOHYDRATE POLYMERS, 2016, 140 : 416 - 423
  • [3] Dissolution of α-chitin in deep eutectic solvents
    Sharma, Mukesh
    Mukesh, Chandrakant
    Mondal, Dibyendu
    Prasad, Kamalesh
    RSC ADVANCES, 2013, 3 (39) : 18149 - 18155
  • [4] Study on the Dissolution Mechanism of Cellulose by ChCl-Based Deep Eutectic Solvents
    Zhang, Heng
    Lang, Jinyan
    Lan, Ping
    Yang, Hongyan
    Lu, Junliang
    Wang, Zhe
    MATERIALS, 2020, 13 (02)
  • [5] Switchable Deep Eutectic Solvents for Lignin Dissolution and Regeneration
    Li, Debao
    Qi, Letian
    Yang, Mengru
    Gu, Yujie
    Xue, Yu
    Chen, Jiachuan
    He, Ming
    Yang, Guihua
    POLYMERS, 2023, 15 (21)
  • [6] A two-in-one sensing solvent for green extraction and analysis of N-oxide based explosives
    Zhuang, Siqi
    Jia, Jianhui
    Lin, Ying
    He, Yi
    Liu, Yu
    Huang, Hui
    Chen, Jian-Bo
    MICROCHEMICAL JOURNAL, 2022, 180
  • [7] Highly efficient dissolution of xylan in ionic liquid-based deep eutectic solvents
    Yu, Haitao
    Xue, Zhimin
    Lan, Xue
    Liu, Qiaoling
    Shi, Ruifen
    Mu, Tiancheng
    CELLULOSE, 2020, 27 (11) : 6175 - 6188
  • [8] Highly efficient dissolution of xylan in ionic liquid-based deep eutectic solvents
    Haitao Yu
    Zhimin Xue
    Xue Lan
    Qiaoling Liu
    Ruifen Shi
    Tiancheng Mu
    Cellulose, 2020, 27 : 6175 - 6188
  • [9] Carbohydrates-based deep eutectic solvents: Thermophysical properties and rice straw dissolution
    Florindo, Catarina
    Margarida Oliveira, M.
    Branco, Luis C.
    Marrucho, Isabel M.
    JOURNAL OF MOLECULAR LIQUIDS, 2017, 247 : 441 - 447
  • [10] The Properties of Choline Chloride-based Deep Eutectic Solvents and their Performance in the Dissolution of Cellulose
    Ren, Hongwei
    Chen, Chunmao
    Wang, Qinghong
    Zhao, Dishun
    Guo, Shaohui
    BIORESOURCES, 2016, 11 (02): : 5435 - 5451