Uniform convergence for approximate traveling waves in linear reaction-hyperbolic systems

被引:20
作者
Friedman, Avner
Hu, Bei
机构
[1] Ohio State Univ, Dept Math, Columbus, OH 43210 USA
[2] Univ Notre Dame, Dept Math, Notre Dame, IN 46556 USA
关键词
traveling waves; reaction-hyperbolic systems; neurofilament;
D O I
10.1512/iumj.2007.56.3044
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper we study a linear reaction-hyperbolic systems of the form epsilon(partial derivative(t) + v(i)partial derivative(x))p(i) = Sigma(n)(j=1) k(ij)p(j) (i = 1, 2, ..., n) for x > 0, t > 0 with "near equilibrium" initial and boundary data. This problem arises in a model of transport of neurofilaments in axons. The matrix (k(ij)) is assumed to have a unique null vector (lambda(1), ..., lambda(n)) with positive components summed to 1 and the v(j) are arbitrary velocities such that v equivalent to Sigma(n)(j=1) lambda(j)v(j) > 0. We prove that as epsilon -> 0, the solution converges to a traveling wave with velocity v and a spreading front, and that the convergence rate in the uniform norm is O(epsilon((1-alpha)/2)), for any small positive alpha.
引用
收藏
页码:2133 / 2158
页数:26
相关论文
共 10 条
  • [1] A MODEL FOR SLOW AXONAL-TRANSPORT AND ITS APPLICATION TO NEUROFILAMENTOUS NEUROPATHIES
    BLUM, JJ
    REED, MC
    [J]. CELL MOTILITY AND THE CYTOSKELETON, 1989, 12 (01): : 53 - 65
  • [2] THE TRANSPORT OF ORGANELLES IN AXONS
    BLUM, JJ
    REED, MC
    [J]. MATHEMATICAL BIOSCIENCES, 1988, 90 (1-2) : 233 - 245
  • [3] Chen Y.Z., 1998, Second Order Elliptic Equations and Elliptic Systems, V174
  • [4] A dynamical system model of neurofilament transport in axons
    Craciun, G
    Brown, A
    Friedman, A
    [J]. JOURNAL OF THEORETICAL BIOLOGY, 2005, 237 (03) : 316 - 322
  • [5] A model of intracellular transport of particles in an axon
    Friedman, A
    Craciun, G
    [J]. JOURNAL OF MATHEMATICAL BIOLOGY, 2005, 51 (02) : 217 - 246
  • [6] Approximate traveling waves in linear reaction-hyperbolic equations
    Friedman, Avner
    Craciun, Gheorghe
    [J]. SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2006, 38 (03) : 741 - 758
  • [7] Lieberman GM, 1996, 2 ORDER PARABOLIC DI
  • [8] PINSKI M, 1968, GEB, V9, P101
  • [9] APPROXIMATE TRAVELING WAVES IN LINEAR REACTION-HYPERBOLIC EQUATIONS
    REED, MC
    VENAKIDES, S
    BLUM, JJ
    [J]. SIAM JOURNAL ON APPLIED MATHEMATICS, 1990, 50 (01) : 167 - 180
  • [10] THEORETICAL-ANALYSIS OF RADIOACTIVITY PROFILES DURING FAST AXONAL-TRANSPORT - EFFECTS OF DEPOSITION AND TURNOVER
    REED, MC
    BLUM, JJ
    [J]. CELL MOTILITY AND THE CYTOSKELETON, 1986, 6 (06): : 620 - 627