Existence of infinitely many homoclinic orbits for fourth-order difference systems containing both advance and retardation

被引:56
作者
Chen, Peng [1 ]
Tang, X. H. [1 ]
机构
[1] Cent S Univ, Sch Math Sci & Comp Technol, Changsha 410083, Hunan, Peoples R China
关键词
Fourth-order difference system; Homoclinic solutions; Symmetric mountain pass theorem; 2ND-ORDER HAMILTONIAN-SYSTEMS; SUBHARMONIC SOLUTIONS; PERIODIC-SOLUTIONS; EQUATIONS;
D O I
10.1016/j.amc.2010.09.067
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
By using the symmetric mountain pass theorem, we establish some existence criteria to guarantee the fourth-order difference system Delta(4)u(n - 2) + q(n)u(n) = f(n, u(n + 1),u(n), u(n - 1)) have infinitely many homoclinic orbits, where n is an element of Z; u is an element of R-N; q : Z -> R-NxN and f : Z x R-3N -> R are no periodic in n. (C) 2010 Elsevier Inc. All rights reserved.
引用
收藏
页码:4408 / 4415
页数:8
相关论文
共 32 条
[1]   Multiple positive solutions of singular discrete p-Laplacian problems via variational methods [J].
Agarwal, Ravi P. ;
Perera, Kanishka ;
O'Regan, Donal .
ADVANCES IN DIFFERENCE EQUATIONS, 2005, 2005 (02) :93-99
[2]  
Agarwal Ravil P, 2000, DIFFERENCE EQUATIONS
[3]   PERIODIC-SOLUTIONS OF FIRST-ORDER LINEAR DIFFERENCE-EQUATIONS [J].
AGARWAL, RP ;
POPENDA, J .
MATHEMATICAL AND COMPUTER MODELLING, 1995, 22 (01) :11-19
[4]  
Ahlbrandt C.D., 1996, DISCRETE HAMILTONIAN
[5]  
Ambrosetti A., 1973, Journal of Functional Analysis, V14, P349, DOI 10.1016/0022-1236(73)90051-7
[6]  
Bartolo P, 1983, NONLINEAR ANAL, V7, P241
[7]  
Coti-Zelati V, 1991, J AM MATH SOC, V4, P693
[8]  
COTIZELATI V, 1990, MATH ANN, V288, P133
[10]   Existence of nontrivial homoclinic orbits for fourth-order difference equations [J].
Fang, Hui ;
Zhao, Dapeng .
APPLIED MATHEMATICS AND COMPUTATION, 2009, 214 (01) :163-170