Influence of Gd on the microstructure, mechanical and shape memory properties of Cu-Al-Be polycrystalline shape memory alloy

被引:31
作者
Guniputi, Bala Narasimha [1 ]
Murigendrappa, S. M. [1 ]
机构
[1] Natl Inst Technol Karnataka, Dept Mech Engn, Surathkal 575025, India
来源
MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING | 2018年 / 737卷
关键词
Cu-Al-Be shape memory alloy; Rare earth element; Gadolinium; Grain refinement; Shape memory effect; GRAIN-REFINEMENT; PHASE-TRANSFORMATION; TEMPERATURE; MARTENSITE; BEHAVIOR; SIZE; STABILIZATION; EVOLUTION; NI;
D O I
10.1016/j.msea.2018.09.064
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
In the present study, the influence of rare earth element gadolinium (Gd) on Cu-Al-Be polycrystalline shape memory alloy has been investigated. Cu (88.13) Al 11.42 Be (0.45) ternary alloy with addition of Gd from 0.05 to 0.15 wt% has been used for investigation. The tests have been carried out for microstructure, morphology, ductility, phases, crystal structure, phase transformation temperatures and shape recovery ratio. Refinement of the grain size resulted as gadolinium increased from 0 to 0.08 wt%, the grain size decreases from 463.45 to 81.80 mu m with reduction of 82.34%. The tensile strength has increased from 398.93 to 581.42 MPa with improvement in the ductility from 10.05% to 23.72% at 0.08 wt% gadolinium. The phase transformation temperatures increases as gadolinium increases and reduction in shape recovery ratio from 97% to 65%.
引用
收藏
页码:245 / 252
页数:8
相关论文
共 37 条
[21]   Effect of alloying on microstructure and shape memory characteristics of Cu-Al-Mn shape memory alloys [J].
Mallik, U. S. ;
Sampath, V. .
MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2008, 481 (1-2 C) :680-683
[22]   Influence of microstructural parameters on damping capacity in CuAlBe shape memory alloys [J].
Montecinos, S. .
MATERIALS & DESIGN, 2015, 68 :215-220
[23]   Active shape control of a double-plate structures using piezoceramics and SMA wires [J].
Oh, JT ;
Park, HC ;
Hwang, W .
SMART MATERIALS & STRUCTURES, 2001, 10 (05) :1100-1106
[24]   The effect of the aging period on the martensitic transformation and kinetic characteristic of at % Cu68.09Al26.1Ni1.54Den4.27 shape memory alloy [J].
Ozkul, Iskender ;
Canbay, C. Aksu ;
Aladag, Faruk ;
Aldas, Kemal .
RUSSIAN JOURNAL OF NON-FERROUS METALS, 2017, 58 (02) :130-135
[25]  
Prawdizg TJ, 1966, An investigation of the mechanical properties and microstructures of heat treated aluminium bronzes
[26]  
PREVARSKII AP, 1988, RUSS METALL+, P205
[27]   Ni24.7Ti50.3Pd25.0 high temperature shape memory alloy with narrow thermal hysteresis and high thermal stability [J].
Ramaiah, K. V. ;
Saikrishna, C. N. ;
Gouthama ;
Bhaumik, S. K. .
MATERIALS & DESIGN, 2014, 56 :78-83
[28]   Influence of minor additions of boron and zirconium on shape memory properties and grain refinement of a Cu-Al-Mn shape memory alloy [J].
Sampath, V. ;
Mallik, U. S. .
ESOMAT 2009 - 8TH EUROPEAN SYMPOSIUM ON MARTENSITIC TRANSFORMATIONS, 2009,
[29]   Influence of Silver nanoparticles addition on the phase transformation, mechanical properties and corrosion behaviour of Cu-Al-Ni shape memory alloys [J].
Saud, Safaa N. ;
Hamzah, E. ;
Abubakar, T. ;
Bakhsheshi-Rad, H. R. ;
Farahany, S. ;
Abdolahi, A. ;
Taheri, M. M. .
JOURNAL OF ALLOYS AND COMPOUNDS, 2014, 612 :471-478
[30]   Active vibration control of a flexible cantilever beam using shape memory alloy actuators [J].
Suzuki, Y. ;
Kagawa, Y. .
SMART MATERIALS & STRUCTURES, 2010, 19 (08)