Numerical investigation on bubble dynamics during flow boiling using moving particle semi-implicit method

被引:63
|
作者
Chen, Ronghua [1 ]
Tian, Wenxi [1 ]
Su, G. H. [1 ]
Qiu, Suizheng [1 ]
Ishiwatari, Yuki [2 ]
Oka, Yoshiaki [3 ]
机构
[1] Xi An Jiao Tong Univ, Dept Nucl Sci & Technol, State Key Lab Multiphase Flow Power Engn, Xian 710049, Peoples R China
[2] Univ Tokyo, Dept Nucl Engn & Management, Tokyo 1138586, Japan
[3] Waseda Univ, Grad Sch Adv Sci & Engn, Joint Dept Nucl Energy, Tokyo 1698050, Japan
基金
中国国家自然科学基金;
关键词
VERTICAL UPFLOW; SINGLE BUBBLE; GROWTH; DETACHMENT; DEPARTURE; BEHAVIOR; COLLAPSE; RISE;
D O I
10.1016/j.nucengdes.2010.08.008
中图分类号
TL [原子能技术]; O571 [原子核物理学];
学科分类号
0827 ; 082701 ;
摘要
In the present study, two-dimensional numerical simulation of single bubble dynamics during nucleate flow boiling has been performed using moving particle semi-implicit (MPS) method. A set of moving particles was used to represent the liquid phase. The bubble-liquid interface was set to be a free surface boundary which can be captured according to the motion and location of interfacial particles. The interfacial heat transfer rate was determined by the energy variety of interfacial particles. The bulk liquid velocities investigated ranged from 0.07 to 0.3 m/s. The surface orientations varied from vertical to horizontal through 60 degrees, 45 degrees and 30 degrees. Bulk liquid subcooling varied from 0 to 6.5 degrees C and wall superheat from 2.0 to 20.0 degrees C. The computational results show that the bulk liquid velocity and surface orientation influenced the bubble diameter and liftoff time. Bubble would slide along the heater surface before lifting off and the sliding velocity at liftoff increased with an increase in bulk liquid velocity. Bubble dynamic was related to bulk liquid subcooling as well as wall superheat. The numerical results have been compared with the experimental data. (C) 2010 Elsevier B.V. All rights reserved.
引用
收藏
页码:3830 / 3840
页数:11
相关论文
共 50 条
  • [1] Numerical simulation on void bubble dynamics using moving particle semi-implicit method
    Tian, Wenxi
    Ishiwatari, Yuki
    Ikejiri, Satoshi
    Yamakawa, Masanori
    Oka, Yoshiaki
    NUCLEAR ENGINEERING AND DESIGN, 2009, 239 (11) : 2382 - 2390
  • [2] Numerical computation of thermally controlled steam bubble condensation using Moving Particle Semi-implicit (MPS) method
    Tian, Wenxi
    Ishiwatari, Yuki
    Ikejiri, Satoshi
    Yamakawa, Masanori
    Oka, Yoshiaki
    ANNALS OF NUCLEAR ENERGY, 2010, 37 (01) : 5 - 15
  • [3] An improved Multiphase Moving Particle Semi-implicit method in bubble rising simulations with large density ratios
    Guo, Kailun
    Chen, Ronghua
    Qiu, Suizheng
    Tian, Wenxi
    Su, Guanghui
    NUCLEAR ENGINEERING AND DESIGN, 2018, 340 : 370 - 387
  • [4] Computational haemodynamics of small vessels using the Moving Particle Semi-implicit (MPS) method
    Gambaruto, Alberto M.
    JOURNAL OF COMPUTATIONAL PHYSICS, 2015, 302 : 68 - 96
  • [5] Numerical Study on Relocation Process of Al, Fe, and Pb by Using the Moving Particle Semi-Implicit Method During Severe Accident of Reactor
    Yulianto, Yacobus
    Mustari, Asril Pramutadi Andi
    INTERNATIONAL JOURNAL OF TECHNOLOGY, 2023, 14 (04) : 800 - 810
  • [6] Study on melt stratification and migration in debris bed using the moving particle semi-implicit method
    Li, Gen
    Wen, Panpan
    Feng, Haobo
    Zhang, Jun
    Yan, Junjie
    NUCLEAR ENGINEERING AND DESIGN, 2020, 360
  • [7] An axisymmetric multiphase moving particle semi-implicit method for simulation of 3D axisymmetric flow
    Gao, Jinchen
    Li, Gen
    Wang, Jinshi
    Duan, Guangtao
    Yan, Junjie
    PROGRESS IN NUCLEAR ENERGY, 2022, 149
  • [8] Numerical investigation on bubble evolution during nucleate boiling using diffuse interface method
    Wang, Ye
    Cai, Jiejin
    INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 2017, 112 : 28 - 38
  • [9] An enhanced moving particle semi-implicit method for simulation of incompressible fluid flow and fluid-structure interaction
    Cai, Qinghang
    Chen, Ronghua
    Guo, Kailun
    Tian, Wenxi
    Qiu, Suizheng
    Su, G. H.
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2023, 145 : 41 - 57
  • [10] Numerical study of single bubble dynamics during flow boiling
    Li, Ding
    Dhir, Vijay K.
    JOURNAL OF HEAT TRANSFER-TRANSACTIONS OF THE ASME, 2007, 129 (07): : 864 - 876