On One Model Problem for the Reaction-Diffusion-Advection Equation

被引:6
|
作者
Davydova, M. A. [1 ]
Zakharova, S. A. [1 ]
Levashova, N. T. [1 ]
机构
[1] Moscow MV Lomonosov State Univ, Moscow 119991, Russia
基金
俄罗斯科学基金会; 俄罗斯基础研究基金会;
关键词
reaction-diffusion-advection equations; singularly perturbed problems; asymptotic methods; SINGULARLY PERTURBED PROBLEMS; CONTRAST STRUCTURES; INTERNAL LAYERS; BOUNDARY;
D O I
10.1134/S0965542517090056
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The asymptotic behavior of the solution with boundary layers in the time-independent mathematical model of reaction-diffusion-advection arising when describing the distribution of greenhouse gases in the surface atmospheric layer is studied. On the basis of the asymptotic method of differential inequalities, the existence of a boundary-layer solution and its asymptotic Lyapunov stability as a steady-state solution of the corresponding parabolic problem is proven. One of the results of this work is the determination of the local domain of the attraction of a boundary-layer solution.
引用
收藏
页码:1528 / 1539
页数:12
相关论文
共 50 条
  • [1] On one model problem for the reaction–diffusion–advection equation
    M. A. Davydova
    S. A. Zakharova
    N. T. Levashova
    Computational Mathematics and Mathematical Physics, 2017, 57 : 1528 - 1539
  • [2] Front formation and dynamics in one reaction-diffusion-advection model
    Volkov V.T.
    Grachev N.E.
    Dmitriev A.V.
    Nefedov N.N.
    Mathematical Models and Computer Simulations, 2011, 3 (2) : 158 - 164
  • [3] Asymptotics of the front motion in the reaction-diffusion-advection problem
    E. A. Antipov
    N. T. Levashova
    N. N. Nefedov
    Computational Mathematics and Mathematical Physics, 2014, 54 : 1536 - 1549
  • [4] Asymptotics of the front motion in the reaction-diffusion-advection problem
    Antipov, E. A.
    Levashova, N. T.
    Nefedov, N. N.
    COMPUTATIONAL MATHEMATICS AND MATHEMATICAL PHYSICS, 2014, 54 (10) : 1536 - 1549
  • [5] On a free boundary problem for a reaction-diffusion-advection logistic model in heterogeneous environment
    Monobe, Harunori
    Wu, Chang-Hong
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2016, 261 (11) : 6144 - 6177
  • [6] A Reaction-Diffusion-Advection Equation with Mixed and Free Boundary Conditions
    Zhao, Yonggang
    Wang, Mingxin
    JOURNAL OF DYNAMICS AND DIFFERENTIAL EQUATIONS, 2018, 30 (02) : 743 - 777
  • [7] On a nonlocal reaction-diffusion-advection equation modelling phytoplankton dynamics
    Du, Yihong
    Mei, Linfeng
    NONLINEARITY, 2011, 24 (01) : 319 - 349
  • [8] A nonlocal reaction-diffusion-advection model with free boundaries
    Tang, Yaobin
    Dai, Binxiang
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2024, 75 (04):
  • [9] Stabilization of the Moving Front Solution of the Reaction-Diffusion-Advection Problem
    Nefedov, Nikolay
    Polezhaeva, Elena
    Levashova, Natalia
    AXIOMS, 2023, 12 (03)
  • [10] Evolution of conditional dispersal: a reaction-diffusion-advection model
    Chen, Xinfu
    Hambrock, Richard
    Lou, Yuan
    JOURNAL OF MATHEMATICAL BIOLOGY, 2008, 57 (03) : 361 - 386