Single-Particle Spectroscopy of Supported Silver Clusters on Silicon: Substrate Effects on Localized Surface Plasmons

被引:1
作者
Stallberg, K. [1 ,2 ,3 ]
Lilienkamp, G. [1 ]
Daum, W. [1 ]
机构
[1] Tech Univ Clausthal, Inst Energy Res & Phys Technol, Leibnizstr 4, D-38678 Clausthal Zellerfeld, Germany
[2] Philipps Univ, Fac Phys, D-35032 Marburg, Germany
[3] Philipps Univ, Mat Sci Ctr, D-35032 Marburg, Germany
关键词
Localized surface plasmon (LSP); Plasmon-induced polarization; Photoemission electron microscopy (PEEM); PHOTOEMISSION ELECTRON-MICROSCOPY; HOT; NANOPARTICLES; RESONANCES; GENERATION; NANOCUBE; GOLD; SIZE;
D O I
10.1007/s11468-019-00944-7
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The presence of a surrounding medium strongly affects the spectral properties of localized surface plasmons at metallic nanoparticles. Vice versa, plasmonic resonances have large impact on the electric polarization in a surrounding or supporting material. For applications, e.g., in light-converting devices, the coupling of localized surface plasmons with polarizations in semiconducting substrates is of particular importance. Using photoemission electron microscopy with tunable laser excitation, we perform single-particle spectroscopy of silver nanoclusters directly grown on Si(100). Two distinct localized surface plasmon modes are observed as resonances in the two-photon photoemission signals from individual silver clusters. The strengths of these resonances strongly depend on the polarization of the exciting electric field, which allows us to assign them to plasmon modes with polarizations parallel and perpendicular, respectively, to the supporting silicon substrate. Our mode assignment is supported by simulations which provide insight into the mutual interaction of charge oscillations at the particle surface with electric polarizations at the silver/silicon interface.
引用
收藏
页码:1489 / 1496
页数:8
相关论文
共 36 条
  • [1] Optimal open-loop near-field control of plasmonic nanostructures
    Aeschlimann, Martin
    Bauer, Michael
    Bayer, Daniela
    Brixner, Tobias
    Cunovic, Stefan
    Fischer, Alexander
    Melchior, Pascal
    Pfeiffer, Walter
    Rohmer, Martin
    Schneider, Christian
    Strueber, Christian
    Tuchscherer, Philip
    Voronine, Dmitri V.
    [J]. NEW JOURNAL OF PHYSICS, 2012, 14
  • [2] DIELECTRIC FUNCTIONS AND OPTICAL-PARAMETERS OF SI, GE, GAP, GAAS, GASB, INP, INAS, AND INSB FROM 1.5 TO 6.0 EV
    ASPNES, DE
    STUDNA, AA
    [J]. PHYSICAL REVIEW B, 1983, 27 (02) : 985 - 1009
  • [3] Atwater HA, 2010, NAT MATER, V9, P205, DOI [10.1038/NMAT2629, 10.1038/nmat2629]
  • [4] Light harvesting enhancement in solar cells with quasicrystalline plasmonic structures
    Bauer, Christina
    Giessen, Harald
    [J]. OPTICS EXPRESS, 2013, 21 (09): : A363 - A371
  • [5] Understanding Hot-Electron Generation and Plasmon Relaxation in Metal Nanocrystals: Quantum and Classical Mechanisms
    Besteiro, Lucas V.
    Kong, Xiang-Tian
    Wang, Zhiming
    Hartland, Gregory
    Govorov, Alexander O.
    [J]. ACS PHOTONICS, 2017, 4 (11): : 2759 - 2781
  • [6] Bohren C. F., 1998, Wiley Science Series, DOI 10.1002/9783527618156
  • [7] Multipolar Nanocube Plasmon Mode-Mixing in Finite Substrates
    Cherqui, Charles
    Li, Guoliang
    Busche, Jacob A.
    Quillin, Steven C.
    Camden, Jon P.
    Masiello, David J.
    [J]. JOURNAL OF PHYSICAL CHEMISTRY LETTERS, 2018, 9 (03): : 504 - 512
  • [8] Clavero C, 2014, NAT PHOTONICS, V8, P95, DOI [10.1038/NPHOTON.2013.238, 10.1038/nphoton.2013.238]
  • [9] Numerical simulation of electron energy loss near inhomogeneous dielectrics
    de Abajo, FJG
    Aizpurua, J
    [J]. PHYSICAL REVIEW B, 1997, 56 (24): : 15873 - 15884
  • [10] Retarded field calculation of electron energy loss in inhomogeneous dielectrics
    de Abajo, FJG
    Howie, A
    [J]. PHYSICAL REVIEW B, 2002, 65 (11) : 1154181 - 11541817