An Efficient Algorithm for Finding Modules in Fault Trees

被引:13
作者
Chen, Mei [1 ]
Xiao, Ning-Cong [1 ]
Zuo, Ming J. [2 ,3 ]
Ding, Yi [4 ]
机构
[1] Univ Elect Sci & Technol China, Sch Mech & Elect Engn, Chengdu 611731, Peoples R China
[2] Univ Alberta, Dept Mech Engn, Edmonton, AB T6G 2G8, Canada
[3] Univ Elect Sci & Technol China, Chengdu 611731, Peoples R China
[4] Zhejiang Univ, Coll Elect Engn, Hangzhou 310007, Peoples R China
基金
加拿大自然科学与工程研究理事会; 中国国家自然科学基金;
关键词
Fault trees; Logic gates; Software algorithms; Parallel algorithms; Indexes; Terminology; Reliability; Coherent fault trees; linear-time algorithm; lowest common ancestor; modules; MODULARIZATION; REDUCTION; TOOL;
D O I
10.1109/TR.2019.2940651
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
A module of a fault tree is an independent subtree that has no input from the rest of the tree and no output to the rest, except the top events. Modularization is an important technique to reduce the computation cost for large, complex fault tree analysis. This article presents a new linear-time algorithm that is more efficient and easier to code for finding modules existing in fault trees. Two main stages are included in the proposed algorithm: branching and transforming. To demonstrate the efficiency and applicability of the proposed algorithm, comparisons are performed between the proposed algorithm and other linear-time algorithms for finding modules in fault trees. Results have shown the superiority and effectiveness of the proposed algorithm.
引用
收藏
页码:862 / 874
页数:13
相关论文
共 27 条
[1]  
Arora S, 2009, COMPUTATIONAL COMPLEXITY: A MODERN APPROACH, P1, DOI 10.1017/CBO9780511804090
[2]   AN IMPROVED TOP-DOWN ALGORITHM COMBINED WITH MODULARIZATION AS A HIGHLY EFFICIENT METHOD FOR FAULT TREE ANALYSIS [J].
CAMARINOPOULOS, L ;
YLLERA, J .
RELIABILITY ENGINEERING & SYSTEM SAFETY, 1985, 11 (02) :93-108
[3]   Efficient reduction and modularization for large fault trees stored by pages [J].
Chen, Shanqi ;
Wang, Jin ;
Wang, Jiaqun ;
Wang, Fang ;
Hu, Liqin .
ANNALS OF NUCLEAR ENERGY, 2016, 90 :22-25
[4]   A Weibull-based compositional approach for hierarchical dynamic fault trees [J].
Chiacchio, F. ;
Cacioppo, M. ;
D'Urso, D. ;
Manno, G. ;
Trapani, N. ;
Compagno, L. .
RELIABILITY ENGINEERING & SYSTEM SAFETY, 2013, 109 :45-52
[5]   Analysis of large fault trees based on functional decomposition [J].
Contini, Sergio ;
Matuzas, Vaidas .
RELIABILITY ENGINEERING & SYSTEM SAFETY, 2011, 96 (03) :383-390
[6]   BDD algorithms based on modularization for fault tree analysis [J].
Deng, Yunli ;
Wang, He ;
Guo, Biao .
PROGRESS IN NUCLEAR ENERGY, 2015, 85 :192-199
[7]   Developing a low-cost high-quality software tool for dynamic fault-tree analysis [J].
Dugan, JB ;
Sullivan, KJ ;
Coppit, D .
IEEE TRANSACTIONS ON RELIABILITY, 2000, 49 (01) :49-59
[8]   A linear-time algorithm to find modules of fault trees [J].
Dutuit, Y ;
Rauzy, A .
IEEE TRANSACTIONS ON RELIABILITY, 1996, 45 (03) :422-425
[9]   Integrating Safety Analysis With Functional Modeling [J].
El Ariss, Omar ;
Xu, Dianxiang ;
Wong, W. Eric .
IEEE TRANSACTIONS ON SYSTEMS MAN AND CYBERNETICS PART A-SYSTEMS AND HUMANS, 2011, 41 (04) :610-624
[10]   An extended HAZOP analysis approach with dynamic fault tree [J].
Guo, Lijie ;
Kang, Jianxin .
JOURNAL OF LOSS PREVENTION IN THE PROCESS INDUSTRIES, 2015, 38 :224-232