Multigeneration Production of Secondary Organic Aerosol from Toluene Photooxidation

被引:42
|
作者
Li, Yixin [1 ]
Zhao, Jiayun [1 ]
Wang, Yuan [2 ]
Seinfeld, John H. [3 ]
Zhang, Renyi [1 ,4 ]
机构
[1] Texas A&M Univ, Dept Chem, College Stn, TX 77843 USA
[2] CALTECH, Div Geol & Planetary Sci, Pasadena, CA 91125 USA
[3] CALTECH, Div Chem & Chem Engn, Pasadena, CA 91125 USA
[4] Texas A&M Univ, Dept Atmospher Sci, College Stn, TX 77843 USA
关键词
secondary organic aerosol; photooxidation; toluene; aerosol-phase reactions; functionality; PROTON-TRANSFER REACTION; OH-INITIATED OXIDATION; BROWN CARBON; HETEROGENEOUS REACTIONS; MASS-SPECTROMETRY; BLACK CARBON; SEVERE HAZE; METHYLGLYOXAL; MECHANISM; OLIGOMERIZATION;
D O I
10.1021/acs.est.1c02026
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Photooxidation of volatile organic compounds (VOCs) produces secondary organic aerosol (SOA) and light-absorbing brown carbon (BrC) via multiple reaction steps/pathways, reflecting significant chemical complexity relevant to gaseous oxidation and subsequent gas-to-particle conversion. Toluene is an important VOC under urban conditions, but the fundamental chemical mechanism leading to SOA formation remains uncertain. Here, we elucidate multigeneration SOA production from toluene by simultaneously tracking the evolutions of gas-phase oxidation and aerosol formation in a reaction chamber. Large size increase and browning of monodisperse sub-micrometer seed particles occur shortly after initiating oxidation by hydroxyl radical (OH) at 10-90% relative humidity (RH). The evolution in gaseous products and aerosol properties (size/density/optical properties) and chemical speciation of aerosol-phase products indicate that the aerosol growth and browning result from earlier generation products consisting dominantly of dicarbonyl and carboxylic functional groups. While volatile dicarbonyls engage in aqueous reactions to yield nonvolatile oligomers and light-absorbing nitrogen heterocycles/heterochains (in the presence of NH3) at high RH, organic acids contribute to aerosol carboxylates via ionic dissociation or acid-base reaction in a wide RH range. We conclude that toluene contributes importantly to SOA/BrC formation from dicarbonyls and organic acids because of their prompt and high yields from photooxidation and unique functionalities for participation in aerosol-phase reactions.
引用
收藏
页码:8592 / 8603
页数:12
相关论文
共 50 条
  • [41] Secondary organic aerosol formation from photooxidation of a mixture of dimethyl sulfide and isoprene
    Chen, Tianyi
    Jang, Myoseon
    ATMOSPHERIC ENVIRONMENT, 2012, 46 : 271 - 278
  • [42] Chemical characterization of organosulfates in secondary organic aerosol derived from the photooxidation of alkanes
    Riva, Matthieu
    Barbosa, Thais Da Silva
    Lin, Ying-Hsuan
    Stone, Elizabeth A.
    Gold, Avram
    Surratt, Jason D.
    ATMOSPHERIC CHEMISTRY AND PHYSICS, 2016, 16 (17) : 11001 - 11018
  • [43] Secondary organic aerosol formation from photooxidation of furan: effects of NOx and humidity
    Jiang, Xiaotong
    Tsona, Narcisse T.
    Jia, Long
    Liu, Shijie
    Zhang, Hailiang
    Xu, Yongfu
    Du, Lin
    ATMOSPHERIC CHEMISTRY AND PHYSICS, 2019, 19 (21) : 13591 - 13609
  • [44] Impact of NOx and OH on secondary organic aerosol formation from β-pinene photooxidation
    Sarrafzadeh, Mehrnaz
    Wildt, Juergen
    Pullinen, Iida
    Springer, Monika
    Kleist, Einhard
    Tillmann, Ralf
    Schmitt, Sebastian H.
    Wu, Cheng
    Mentel, Thomas F.
    Zhao, Defeng
    Hastie, Donald R.
    Kiendler-Scharr, Astrid
    ATMOSPHERIC CHEMISTRY AND PHYSICS, 2016, 16 (17) : 11237 - 11248
  • [45] The remarkable effect of FeSO4 seed aerosols on secondary organic aerosol formation from photooxidation of α-pinene/NOx and toluene/NOx
    Chu, Biwu
    Hao, Jiming
    Takekawa, Hideto
    Li, Junhua
    Wang, Kun
    Jiang, Jingkun
    ATMOSPHERIC ENVIRONMENT, 2012, 55 : 26 - 34
  • [46] Distinguished effect of FeSO4 seeds on secondary organic aerosol formation from photooxidation of a-pinene/NOx and toluene/NOx
    Chu, Biwu
    Li, Junhua
    Takekawa, Hideto
    Hao, Jiming
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2012, 243
  • [47] Secondary Organic Aerosol Formation from the Photooxidation of Aromatic Ketone Intermediate Volatile Organic Compounds
    Liang, Chengrui
    Wang, Shuxiao
    Zhao, Bin
    Xie, Jinzi
    Li, Yuyang
    Feng, Boyang
    He, Yicong
    Hou, Shuai
    Huang, Lyuyin
    Qu, Qipeng
    Zhang, Hua
    Zhu, Liang
    Jiang, Jingkun
    Hao, Jiming
    ENVIRONMENTAL SCIENCE & TECHNOLOGY, 2024, 58 (48) : 21275 - 21285
  • [48] Effect of humidity on the composition of isoprene photooxidation secondary organic aerosol
    Nguyen, T. B.
    Roach, P. J.
    Laskin, J.
    Laskin, A.
    Nizkorodov, S. A.
    ATMOSPHERIC CHEMISTRY AND PHYSICS, 2011, 11 (14) : 6931 - 6944
  • [49] Interpretation of Secondary Organic Aerosol Formation from Diesel Exhaust Photooxidation in an Environmental Chamber
    Nakao, Shunsuke
    Shrivastava, Manish
    Anh Nguyen
    Jung, Heejung
    Cocker, David, III
    AEROSOL SCIENCE AND TECHNOLOGY, 2011, 45 (08) : 964 - 972
  • [50] Chemical composition and size distribution of secondary organic aerosol formed from the photooxidation of isoprene
    LIU Xianyun ZHANG Weijun WANG Zhenya ZHAO Weixiong TAO Ling YANG Xibin Laboratory of Environmental Spectroscopy Anhui Institute of Optics and Fine Mechanics Chinese Academy of Sciences Hefei China
    Journal of Environmental Sciences, 2009, 21 (11) : 1525 - 1531