Connectivity alterations in autism reflect functional idiosyncrasy

被引:34
作者
Benkarim, Oualid [1 ]
Paquola, Casey [1 ]
Park, Bo-yong [1 ]
Hong, Seok-Jun [2 ,3 ,4 ]
Royer, Jessica [1 ]
de Wael, Reinder Vos [1 ]
Lariviere, Sara [1 ]
Valk, Sofie [5 ,6 ]
Bzdok, Danilo [1 ,7 ,8 ]
Mottron, Laurent [9 ,10 ]
Bernhardt, Boris C. [1 ]
机构
[1] McGill Univ, Montreal Neurol Inst & Hosp, McConnell Brain Imaging Ctr, Montreal, PQ, Canada
[2] Child Mind Inst, Ctr Developing Brain, New York, NY USA
[3] Sungkyunkwan Univ, Ctr Neurosci Imaging Res, Inst Basic Sci, Suwon, South Korea
[4] Sungkyunkwan Univ, Dept Biomed Engn, Suwon, South Korea
[5] Max Planck Inst Human Cognit & Brain Sci, Leipzig, Germany
[6] FZ Julich, INM 7, Julich, Germany
[7] McGill Univ, Fac Med, Dept Biomed Engn, Montreal, PQ, Canada
[8] Mila Quebec Artificial Intelligence Inst, Montreal, PQ, Canada
[9] Univ Montreal, Ctr Rech, CIUSSSNIM, Montreal, PQ, Canada
[10] Univ Montreal, Dept Psychiat, Montreal, PQ, Canada
基金
加拿大健康研究院; 新加坡国家研究基金会; 加拿大自然科学与工程研究理事会;
关键词
DIAGNOSTIC OBSERVATION SCHEDULE; RESTING-STATE NETWORKS; SURFACE-BASED ANALYSIS; DEFAULT-MODE NETWORK; SPECTRUM DISORDER; BRAIN NETWORKS; SYMPTOM SEVERITY; VARIABILITY; ARCHITECTURE; INDIVIDUALS;
D O I
10.1038/s42003-021-02572-6
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
Benkarim et al devise an approach to profile inter-individual variability in functional network organization and test whether such idiosyncrasy contributes to the connectivity alterations found in Autism Spectrum Disorder. Their approach provides potential biomarkers to study atypical brain development and may be used to consolidate prior research findings on the variable nature of connectome level anomalies in autism. Autism spectrum disorder (ASD) is commonly understood as an alteration of brain networks, yet case-control analyses against typically-developing controls (TD) have yielded inconsistent results. Here, we devised a novel approach to profile the inter-individual variability in functional network organization and tested whether such idiosyncrasy contributes to connectivity alterations in ASD. Studying a multi-centric dataset with 157 ASD and 172 TD, we obtained robust evidence for increased idiosyncrasy in ASD relative to TD in default mode, somatomotor and attention networks, but also reduced idiosyncrasy in lateral temporal cortices. Idiosyncrasy increased with age and significantly correlated with symptom severity in ASD. Furthermore, while patterns of functional idiosyncrasy were not correlated with ASD-related cortical thickness alterations, they co-localized with the expression patterns of ASD risk genes. Notably, we could demonstrate that patterns of atypical idiosyncrasy in ASD closely overlapped with connectivity alterations that are measurable with conventional case-control designs and may, thus, be a principal driver of inconsistency in the autism connectomics literature. These findings support important interactions between inter-individual heterogeneity in autism and functional signatures. Our findings provide novel biomarkers to study atypical brain development and may consolidate prior research findings on the variable nature of connectome level anomalies in autism.
引用
收藏
页数:15
相关论文
共 141 条
  • [1] Abrahams BS, 2010, ARCH NEUROL-CHICAGO, V67, P395, DOI 10.1001/archneurol.2010.47
  • [2] On testing for spatial correspondence between maps of human brain structure and function
    Alexander-Bloch, Aaron F.
    Shou, Haochang
    Liu, Siyuan
    Satterthwaite, Theodore D.
    Glahn, David C.
    Shinohara, Russell T.
    Vandekar, Simon N.
    Raznahan, Armin
    [J]. NEUROIMAGE, 2018, 178 : 540 - 551
  • [3] Heritability of individualized cortical network topography
    Anderson, Kevin M.
    Ge, Tian
    Kong, Ru
    Patrick, Lauren M.
    Spreng, R. Nathan
    Sabuncu, Mert R.
    Yeo, B. T. Thomas
    Holmes, Avram J.
    [J]. PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2021, 118 (09)
  • [4] [Anonymous], 2013, DIAGN STAT MAN MENT, VFifth, P15, DOI [10.1176/appi.books.9780890425596.dsm04, DOI 10.1176/APPI.BOOKS.9780890425596.DSM04, DOI 10.1176/APPI.BOOKS.9780890425596]
  • [5] A practical guide to linking brain-wide gene expression and neuroimaging data
    Arnatkeviciute, Aurina
    Fulcher, Ben D.
    Fornito, Alex
    [J]. NEUROIMAGE, 2019, 189 : 353 - 367
  • [6] Abnormal functional connectivity of default mode sub-networks in autism spectrum disorder patients
    Assaf, Michal
    Jagannathan, Kanchana
    Calhoun, Vince D.
    Miller, Laura
    Stevens, Michael C.
    Sahl, Robert
    O'Boyle, Jacqueline G.
    Schultz, Robert T.
    Pearlson, Godfrey D.
    [J]. NEUROIMAGE, 2010, 53 (01) : 247 - 256
  • [7] Prevalence of Autism Spectrum Disorder Among Children Aged 8 Years - Autism and Developmental Disabilities Monitoring Network, 11 Sites, United States, 2014
    Baio, Jon
    Wiggins, Lisa
    Christensen, Deborah L.
    Maenner, Matthew J.
    Daniels, Julie
    Warren, Zachary
    Kurzius-Spencer, Margaret
    Zahorodny, Walter
    Rosenberg, Cordelia Robinson
    White, Tiffany
    Durkin, Maureen S.
    Imm, Pamela
    Nikolaou, Loizos
    Yeargin-Allsopp, Marshalyn
    Lee, Li-Ching
    Harrington, Rebecca
    Lopez, Maya
    Fitzgerald, Robert T.
    Hewitt, Amy
    Pettygrove, Sydney
    Constantino, John N.
    Vehorn, Alison
    Shenouda, Josephine
    Hall-Lande, Jennifer
    Braun, Kim Van Naarden
    Dowling, Nicole F.
    [J]. MMWR SURVEILLANCE SUMMARIES, 2018, 67 (06): : 1 - 23
  • [8] A tutorial and tool for exploring feature similarity gradients with MRI data
    Bajada, Claude J.
    Campos, Lucas Q. Costa
    Caspers, Svenja
    Muscat, Richard
    Parker, Geoff J. M.
    Ralph, Matthew A. Lambon
    Cloutman, Lauren L.
    Trujillo-Barreto, Nelson J.
    [J]. NEUROIMAGE, 2020, 221
  • [9] Large-scale analyses of the relationship between sex, age and intelligence quotient heterogeneity and cortical morphometry in autism spectrum disorder
    Bedford, Saashi A.
    Park, Min Tae M.
    Devenyi, Gabriel A.
    Tullo, Stephanie
    Germann, Jurgen
    Patel, Raihaan
    Anagnostou, Evdokia
    Baron-Cohen, Simon
    Bullmore, Edward T.
    Chura, Lindsay R.
    Craig, Michael C.
    Ecker, Christine
    Floris, Dorothea L.
    Holt, Rosemary J.
    Lenroot, Rhoshel
    Lerch, Jason P.
    Lombardo, Michael, V
    Murphy, Declan G. M.
    Raznahan, Armin
    Ruigrok, Amber N., V
    Smith, Elizabeth
    Spencer, Michael D.
    Suckling, John
    Taylor, Margot J.
    Thurm, Audrey
    Lai, Meng-Chuan
    Chakravarty, M. Mallar
    [J]. MOLECULAR PSYCHIATRY, 2020, 25 (03) : 614 - 628
  • [10] A component based noise correction method (CompCor) for BOLD and perfusion based fMRI
    Behzadi, Yashar
    Restom, Khaled
    Liau, Joy
    Liu, Thomas T.
    [J]. NEUROIMAGE, 2007, 37 (01) : 90 - 101