Connectivity alterations in autism reflect functional idiosyncrasy

被引:37
作者
Benkarim, Oualid [1 ]
Paquola, Casey [1 ]
Park, Bo-yong [1 ]
Hong, Seok-Jun [2 ,3 ,4 ]
Royer, Jessica [1 ]
de Wael, Reinder Vos [1 ]
Lariviere, Sara [1 ]
Valk, Sofie [5 ,6 ]
Bzdok, Danilo [1 ,7 ,8 ]
Mottron, Laurent [9 ,10 ]
Bernhardt, Boris C. [1 ]
机构
[1] McGill Univ, Montreal Neurol Inst & Hosp, McConnell Brain Imaging Ctr, Montreal, PQ, Canada
[2] Child Mind Inst, Ctr Developing Brain, New York, NY USA
[3] Sungkyunkwan Univ, Ctr Neurosci Imaging Res, Inst Basic Sci, Suwon, South Korea
[4] Sungkyunkwan Univ, Dept Biomed Engn, Suwon, South Korea
[5] Max Planck Inst Human Cognit & Brain Sci, Leipzig, Germany
[6] FZ Julich, INM 7, Julich, Germany
[7] McGill Univ, Fac Med, Dept Biomed Engn, Montreal, PQ, Canada
[8] Mila Quebec Artificial Intelligence Inst, Montreal, PQ, Canada
[9] Univ Montreal, Ctr Rech, CIUSSSNIM, Montreal, PQ, Canada
[10] Univ Montreal, Dept Psychiat, Montreal, PQ, Canada
基金
加拿大自然科学与工程研究理事会; 新加坡国家研究基金会; 加拿大健康研究院;
关键词
DIAGNOSTIC OBSERVATION SCHEDULE; RESTING-STATE NETWORKS; SURFACE-BASED ANALYSIS; DEFAULT-MODE NETWORK; SPECTRUM DISORDER; BRAIN NETWORKS; SYMPTOM SEVERITY; VARIABILITY; ARCHITECTURE; INDIVIDUALS;
D O I
10.1038/s42003-021-02572-6
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
Benkarim et al devise an approach to profile inter-individual variability in functional network organization and test whether such idiosyncrasy contributes to the connectivity alterations found in Autism Spectrum Disorder. Their approach provides potential biomarkers to study atypical brain development and may be used to consolidate prior research findings on the variable nature of connectome level anomalies in autism. Autism spectrum disorder (ASD) is commonly understood as an alteration of brain networks, yet case-control analyses against typically-developing controls (TD) have yielded inconsistent results. Here, we devised a novel approach to profile the inter-individual variability in functional network organization and tested whether such idiosyncrasy contributes to connectivity alterations in ASD. Studying a multi-centric dataset with 157 ASD and 172 TD, we obtained robust evidence for increased idiosyncrasy in ASD relative to TD in default mode, somatomotor and attention networks, but also reduced idiosyncrasy in lateral temporal cortices. Idiosyncrasy increased with age and significantly correlated with symptom severity in ASD. Furthermore, while patterns of functional idiosyncrasy were not correlated with ASD-related cortical thickness alterations, they co-localized with the expression patterns of ASD risk genes. Notably, we could demonstrate that patterns of atypical idiosyncrasy in ASD closely overlapped with connectivity alterations that are measurable with conventional case-control designs and may, thus, be a principal driver of inconsistency in the autism connectomics literature. These findings support important interactions between inter-individual heterogeneity in autism and functional signatures. Our findings provide novel biomarkers to study atypical brain development and may consolidate prior research findings on the variable nature of connectome level anomalies in autism.
引用
收藏
页数:15
相关论文
共 141 条
[1]  
Abrahams BS, 2010, ARCH NEUROL-CHICAGO, V67, P395, DOI 10.1001/archneurol.2010.47
[2]   On testing for spatial correspondence between maps of human brain structure and function [J].
Alexander-Bloch, Aaron F. ;
Shou, Haochang ;
Liu, Siyuan ;
Satterthwaite, Theodore D. ;
Glahn, David C. ;
Shinohara, Russell T. ;
Vandekar, Simon N. ;
Raznahan, Armin .
NEUROIMAGE, 2018, 178 :540-551
[3]  
American Psychiatric Association [APA], 2013, Diagnostic and Statistical Manual of Mental Disorders (DSM-5 (R)), V5, DOI [DOI 10.1176/APPI.BOOKS.9780890425596, 10.1176/appi.books.9780890420249.dsm-iv-tr]
[4]   Heritability of individualized cortical network topography [J].
Anderson, Kevin M. ;
Ge, Tian ;
Kong, Ru ;
Patrick, Lauren M. ;
Spreng, R. Nathan ;
Sabuncu, Mert R. ;
Yeo, B. T. Thomas ;
Holmes, Avram J. .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2021, 118 (09)
[5]   A practical guide to linking brain-wide gene expression and neuroimaging data [J].
Arnatkeviciute, Aurina ;
Fulcher, Ben D. ;
Fornito, Alex .
NEUROIMAGE, 2019, 189 :353-367
[6]   Abnormal functional connectivity of default mode sub-networks in autism spectrum disorder patients [J].
Assaf, Michal ;
Jagannathan, Kanchana ;
Calhoun, Vince D. ;
Miller, Laura ;
Stevens, Michael C. ;
Sahl, Robert ;
O'Boyle, Jacqueline G. ;
Schultz, Robert T. ;
Pearlson, Godfrey D. .
NEUROIMAGE, 2010, 53 (01) :247-256
[7]   Prevalence of Autism Spectrum Disorder Among Children Aged 8 Years - Autism and Developmental Disabilities Monitoring Network, 11 Sites, United States, 2014 [J].
Baio, Jon ;
Wiggins, Lisa ;
Christensen, Deborah L. ;
Maenner, Matthew J. ;
Daniels, Julie ;
Warren, Zachary ;
Kurzius-Spencer, Margaret ;
Zahorodny, Walter ;
Rosenberg, Cordelia Robinson ;
White, Tiffany ;
Durkin, Maureen S. ;
Imm, Pamela ;
Nikolaou, Loizos ;
Yeargin-Allsopp, Marshalyn ;
Lee, Li-Ching ;
Harrington, Rebecca ;
Lopez, Maya ;
Fitzgerald, Robert T. ;
Hewitt, Amy ;
Pettygrove, Sydney ;
Constantino, John N. ;
Vehorn, Alison ;
Shenouda, Josephine ;
Hall-Lande, Jennifer ;
Braun, Kim Van Naarden ;
Dowling, Nicole F. .
MMWR SURVEILLANCE SUMMARIES, 2018, 67 (06) :1-23
[8]   A tutorial and tool for exploring feature similarity gradients with MRI data [J].
Bajada, Claude J. ;
Campos, Lucas Q. Costa ;
Caspers, Svenja ;
Muscat, Richard ;
Parker, Geoff J. M. ;
Ralph, Matthew A. Lambon ;
Cloutman, Lauren L. ;
Trujillo-Barreto, Nelson J. .
NEUROIMAGE, 2020, 221
[9]   Large-scale analyses of the relationship between sex, age and intelligence quotient heterogeneity and cortical morphometry in autism spectrum disorder [J].
Bedford, Saashi A. ;
Park, Min Tae M. ;
Devenyi, Gabriel A. ;
Tullo, Stephanie ;
Germann, Jurgen ;
Patel, Raihaan ;
Anagnostou, Evdokia ;
Baron-Cohen, Simon ;
Bullmore, Edward T. ;
Chura, Lindsay R. ;
Craig, Michael C. ;
Ecker, Christine ;
Floris, Dorothea L. ;
Holt, Rosemary J. ;
Lenroot, Rhoshel ;
Lerch, Jason P. ;
Lombardo, Michael, V ;
Murphy, Declan G. M. ;
Raznahan, Armin ;
Ruigrok, Amber N., V ;
Smith, Elizabeth ;
Spencer, Michael D. ;
Suckling, John ;
Taylor, Margot J. ;
Thurm, Audrey ;
Lai, Meng-Chuan ;
Chakravarty, M. Mallar .
MOLECULAR PSYCHIATRY, 2020, 25 (03) :614-628
[10]   A component based noise correction method (CompCor) for BOLD and perfusion based fMRI [J].
Behzadi, Yashar ;
Restom, Khaled ;
Liau, Joy ;
Liu, Thomas T. .
NEUROIMAGE, 2007, 37 (01) :90-101