Space, time and visual analytics

被引:268
作者
Andrienko, Gennady [1 ]
Andrienko, Natalia [1 ]
Demsar, Urska [2 ]
Dransch, Doris [3 ]
Dykes, Jason [4 ]
Fabrikant, Sara Irina [5 ]
Jern, Mikael [6 ]
Kraak, Menno-Jan [7 ]
Schumann, Heidrun [8 ]
Tominski, Christian [8 ]
机构
[1] Fraunhofer Inst IAIS Intelligent Anal & Informat, D-53754 St Augustin, Germany
[2] Natl Univ Ireland Maynooth, Natl Ctr Geocomputat, Maynooth, Kildare, Ireland
[3] GFZ German Res Ctr Geosci Telegrafenberg, Helmholtz Ctr Potsdam, D-14473 Potsdam, Germany
[4] City Univ London, GiCtr, London EC1V 0HB, England
[5] Univ Zurich, Dept Geog, Geog Informat Visualizat & Anal Unit, CH-8057 Zurich, Switzerland
[6] ITN Linkoping Univ, Natl Ctr Visual Analyt, S-60174 Norrkoping, Sweden
[7] Univ Twente, Dept Geoinformat Proc, Fac Geoinformat Sci & Earth Observat, NL-7500 AE Enschede, Netherlands
[8] Univ Rostock, D-18059 Rostock, Germany
关键词
geovisualisation; research agenda; spatio-temporal data; users; CONCEPTUAL-FRAMEWORK; VISUALIZATION; MOVEMENT; DYNAMICS; ISSUES;
D O I
10.1080/13658816.2010.508043
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Visual analytics aims to combine the strengths of human and electronic data processing. Visualisation, whereby humans and computers cooperate through graphics, is the means through which this is achieved. Seamless and sophisticated synergies are required for analysing spatio-temporal data and solving spatio-temporal problems. In modern society, spatio-temporal analysis is not solely the business of professional analysts. Many citizens need or would be interested in undertaking analysis of information in time and space. Researchers should find approaches to deal with the complexities of the current data and problems and find ways to make analytical tools accessible and usable for the broad community of potential users to support spatio-temporal thinking and contribute to solving a large range of problems.
引用
收藏
页码:1577 / 1600
页数:24
相关论文
共 50 条
[41]   Bayesian Visual Analytics: BaVA [J].
House, Leanna ;
Leman, Scotland ;
Han, Chao .
STATISTICAL ANALYSIS AND DATA MINING, 2015, 8 (01) :1-13
[42]   Warning, Bias May Occur: A Proposed Approach to Detecting Cognitive Bias in Interactive Visual Analytics [J].
Wall, Emily ;
Blaha, Leslie M. ;
Franklin, Lyndsey ;
Endert, Alex .
2017 IEEE CONFERENCE ON VISUAL ANALYTICS SCIENCE AND TECHNOLOGY (VAST), 2017, :104-115
[43]   FGVis: visual analytics of human mobility patterns and urban areas based on F-GloVe [J].
Bai, Jinghan ;
Zhang, Huijie ;
Qu, Dezhan ;
Lv, Cheng ;
Shao, Weizhang .
JOURNAL OF VISUALIZATION, 2021, 24 (06) :1319-1335
[44]   Visual analytics of brain networks [J].
Li, Kaiming ;
Guo, Lei ;
Faraco, Carlos ;
Zhu, Dajiang ;
Chen, Hanbo ;
Yuan, Yixuan ;
Lv, Jinglei ;
Deng, Fan ;
Jiang, Xi ;
Zhang, Tuo ;
Hu, Xintao ;
Zhang, Degang ;
Miller, L. Stephen ;
Liu, Tianming .
NEUROIMAGE, 2012, 61 (01) :82-97
[45]   Scale and complexity in visual analytics [J].
Robertson, George ;
Ebert, David ;
Eick, Stephen ;
Keim, Daniel ;
Joy, Ken .
INFORMATION VISUALIZATION, 2009, 8 (04) :247-253
[46]   Defining Insight for Visual Analytics [J].
Chang, Remco ;
Ziemkiewicz, Caroline ;
Green, Tera Marie ;
Ribarsky, William .
IEEE COMPUTER GRAPHICS AND APPLICATIONS, 2009, 29 (02) :14-17
[47]   Visual analytics for spatiotemporal events [J].
Silva, Ricardo Almeida ;
Pires, Joao Moura ;
Datia, Nuno ;
Santos, Maribel Yasmina ;
Martins, Bruno ;
Birra, Fernando .
MULTIMEDIA TOOLS AND APPLICATIONS, 2019, 78 (23) :32805-32847
[48]   Scalable video visual analytics [J].
Hoeferlin, Benjamin ;
Hoeferlin, Markus ;
Heidemann, Gunther ;
Weiskopf, Daniel .
INFORMATION VISUALIZATION, 2015, 14 (01) :10-26
[49]   Influence Maximization With Visual Analytics [J].
Arleo, Alessio ;
Didimo, Walter ;
Liotta, Giuseppe ;
Miksch, Silvia ;
Montecchiani, Fabrizio .
IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, 2022, 28 (10) :3428-3440
[50]   VISUAL ANALYTICS FOR SIMULATION ENSEMBLES [J].
Matkovic, Kresimir ;
Gracanin, Denis ;
Hauser, Helwig .
2018 WINTER SIMULATION CONFERENCE (WSC), 2018, :321-335