Space, time and visual analytics

被引:262
|
作者
Andrienko, Gennady [1 ]
Andrienko, Natalia [1 ]
Demsar, Urska [2 ]
Dransch, Doris [3 ]
Dykes, Jason [4 ]
Fabrikant, Sara Irina [5 ]
Jern, Mikael [6 ]
Kraak, Menno-Jan [7 ]
Schumann, Heidrun [8 ]
Tominski, Christian [8 ]
机构
[1] Fraunhofer Inst IAIS Intelligent Anal & Informat, D-53754 St Augustin, Germany
[2] Natl Univ Ireland Maynooth, Natl Ctr Geocomputat, Maynooth, Kildare, Ireland
[3] GFZ German Res Ctr Geosci Telegrafenberg, Helmholtz Ctr Potsdam, D-14473 Potsdam, Germany
[4] City Univ London, GiCtr, London EC1V 0HB, England
[5] Univ Zurich, Dept Geog, Geog Informat Visualizat & Anal Unit, CH-8057 Zurich, Switzerland
[6] ITN Linkoping Univ, Natl Ctr Visual Analyt, S-60174 Norrkoping, Sweden
[7] Univ Twente, Dept Geoinformat Proc, Fac Geoinformat Sci & Earth Observat, NL-7500 AE Enschede, Netherlands
[8] Univ Rostock, D-18059 Rostock, Germany
关键词
geovisualisation; research agenda; spatio-temporal data; users; CONCEPTUAL-FRAMEWORK; VISUALIZATION; MOVEMENT; DYNAMICS; ISSUES;
D O I
10.1080/13658816.2010.508043
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Visual analytics aims to combine the strengths of human and electronic data processing. Visualisation, whereby humans and computers cooperate through graphics, is the means through which this is achieved. Seamless and sophisticated synergies are required for analysing spatio-temporal data and solving spatio-temporal problems. In modern society, spatio-temporal analysis is not solely the business of professional analysts. Many citizens need or would be interested in undertaking analysis of information in time and space. Researchers should find approaches to deal with the complexities of the current data and problems and find ways to make analytical tools accessible and usable for the broad community of potential users to support spatio-temporal thinking and contribute to solving a large range of problems.
引用
收藏
页码:1577 / 1600
页数:24
相关论文
共 50 条
  • [1] Visual analytics of movement: An overview of methods, tools and procedures
    Andrienko, Natalia
    Andrienko, Gennady
    INFORMATION VISUALIZATION, 2013, 12 (01) : 3 - 24
  • [2] Integrating Data and Model Space in Ensemble Learning by Visual Analytics
    Schneider, Bruno
    Jaeckle, Dominik
    Stoffel, Florian
    Diehl, Alexandra
    Fuchs, Johannes
    Keim, Daniel
    IEEE TRANSACTIONS ON BIG DATA, 2021, 7 (03) : 483 - 496
  • [3] Creative problem solving in digital space using visual analytics
    Cybulski, Jacob L.
    Keller, Susan
    Nguyen, Lemai
    Saundage, Dilal
    COMPUTERS IN HUMAN BEHAVIOR, 2015, 42 : 20 - 35
  • [4] Visual Analytics of Signalling Pathways Using Time Profiles
    Ma, David K. G.
    Stolte, Christian
    Kaur, Sandeep
    Bain, Michael
    O'Donoghue, Sean I.
    SIGNAL AND IMAGE ANALYSIS FOR BIOMEDICAL AND LIFE SCIENCES, 2015, 823 : 3 - 22
  • [5] Visual Parameter Space Exploration in Time and Space
    Piccolotto, Nikolaus
    Boegl, Markus
    Miksch, Silvia
    COMPUTER GRAPHICS FORUM, 2023, 42 (06)
  • [6] Leveraging spatial abstraction in traffic analysis and forecasting with visual analytics
    Andrienko, Natalia
    Andrienko, Gennady
    Rinzivillo, Salvatore
    INFORMATION SYSTEMS, 2016, 57 : 172 - 194
  • [7] ANTENNA: Visual Analytics of Mobility Derived from Cellphone Data
    Silva, Pedro
    Macas, Catarina
    Correia, Joao
    Machado, Penousal
    Polisciuc, Evgheni
    COMPUTER VISION, IMAGING AND COMPUTER GRAPHICS THEORY AND APPLICATIONS, VISIGRAPP 2022, 2023, 1815 : 135 - 160
  • [8] A hybrid visual analytics approach to dynamic space-based networks
    Hu Huaquan
    Song Hanchen
    Wu Lingda
    Yu Ronghuan
    2014 INTERNATIONAL CONFERENCE ON VIRTUAL REALITY AND VISUALIZATION (ICVRV2014), 2014, : 130 - 137
  • [9] Clustering and Classification for Time Series Data in Visual Analytics: A Survey
    Ali, Mohammed
    Alqahtani, Ali
    Jones, Mark W.
    Xie, Xianghua
    IEEE ACCESS, 2019, 7 : 181314 - 181338
  • [10] Visual Analytics of Multivariate Intensive Care Time Series Data
    Brich, N.
    Schulz, C.
    Peter, J.
    Klingert, W.
    Schenk, M.
    Weiskopf, D.
    Krone, M.
    COMPUTER GRAPHICS FORUM, 2022, 41 (06) : 273 - 286