Space, time and visual analytics

被引:267
作者
Andrienko, Gennady [1 ]
Andrienko, Natalia [1 ]
Demsar, Urska [2 ]
Dransch, Doris [3 ]
Dykes, Jason [4 ]
Fabrikant, Sara Irina [5 ]
Jern, Mikael [6 ]
Kraak, Menno-Jan [7 ]
Schumann, Heidrun [8 ]
Tominski, Christian [8 ]
机构
[1] Fraunhofer Inst IAIS Intelligent Anal & Informat, D-53754 St Augustin, Germany
[2] Natl Univ Ireland Maynooth, Natl Ctr Geocomputat, Maynooth, Kildare, Ireland
[3] GFZ German Res Ctr Geosci Telegrafenberg, Helmholtz Ctr Potsdam, D-14473 Potsdam, Germany
[4] City Univ London, GiCtr, London EC1V 0HB, England
[5] Univ Zurich, Dept Geog, Geog Informat Visualizat & Anal Unit, CH-8057 Zurich, Switzerland
[6] ITN Linkoping Univ, Natl Ctr Visual Analyt, S-60174 Norrkoping, Sweden
[7] Univ Twente, Dept Geoinformat Proc, Fac Geoinformat Sci & Earth Observat, NL-7500 AE Enschede, Netherlands
[8] Univ Rostock, D-18059 Rostock, Germany
关键词
geovisualisation; research agenda; spatio-temporal data; users; CONCEPTUAL-FRAMEWORK; VISUALIZATION; MOVEMENT; DYNAMICS; ISSUES;
D O I
10.1080/13658816.2010.508043
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Visual analytics aims to combine the strengths of human and electronic data processing. Visualisation, whereby humans and computers cooperate through graphics, is the means through which this is achieved. Seamless and sophisticated synergies are required for analysing spatio-temporal data and solving spatio-temporal problems. In modern society, spatio-temporal analysis is not solely the business of professional analysts. Many citizens need or would be interested in undertaking analysis of information in time and space. Researchers should find approaches to deal with the complexities of the current data and problems and find ways to make analytical tools accessible and usable for the broad community of potential users to support spatio-temporal thinking and contribute to solving a large range of problems.
引用
收藏
页码:1577 / 1600
页数:24
相关论文
共 37 条
[1]  
Agarwal P., 2008, Self-organising maps: Applications in geographic information science
[2]  
AIGNER W, 2005, P INT C INF VIS LOND
[3]   Visual methods for analyzing time-oriented data [J].
Aigner, Wolfgang ;
Miksch, Silvia ;
Muller, Wolfgang ;
Schumann, Heidrun ;
Tominski, Christian .
IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, 2008, 14 (01) :47-60
[4]   Geovisual analytics for spatial decision support: Setting the research agenda [J].
Andrienko, G. ;
Andrienko, N. ;
Jankowski, P. ;
Keim, D. ;
Kraak, M.-J. ;
Maceachren, A. ;
Wrobel, S. .
INTERNATIONAL JOURNAL OF GEOGRAPHICAL INFORMATION SCIENCE, 2007, 21 (08) :839-857
[5]   Space-in-Time and Time-in-Space Self-Organizing Maps for Exploring Spatiotemporal Patterns [J].
Andrienko, G. ;
Andrienko, N. ;
Bremm, S. ;
Schreck, T. ;
von Landesberger, T. ;
Bak, P. ;
Keim, D. .
COMPUTER GRAPHICS FORUM, 2010, 29 (03) :913-922
[6]   Geovisualization of dynamics, movement and change: key issues and developing approaches in visualization research INTRODUCTION [J].
Andrienko, Gennady ;
Andrienko, Natalia ;
Dykes, Jason ;
Fabrikant, Sara Irina ;
Wachowicz, Monica .
INFORMATION VISUALIZATION, 2008, 7 (3-4) :173-180
[7]  
Andrienko N., 2006, Exploratory Analysis of Spatial and Tem- poral Data: A Systematic Approach
[8]  
Anselin L., 1989, What is special about spatial data? alternative perspectives on spatial data analysis
[9]   Space-time density of trajectories: exploring spatio-temporal patterns in movement data [J].
Demsar, Urska ;
Virrantaus, Kirsi .
INTERNATIONAL JOURNAL OF GEOGRAPHICAL INFORMATION SCIENCE, 2010, 24 (10) :1527-1542
[10]  
Dykes J., 2005, Exploring geovisualization