Artificial Neural Networks (ANNs) as a Novel Modeling Technique in Tribology

被引:64
作者
Argatov, Ivan [1 ]
机构
[1] Tech Univ Berlin, Inst Mech, Dept Syst Dynam & Phys Frict, Berlin, Germany
来源
FRONTIERS IN MECHANICAL ENGINEERING-SWITZERLAND | 2019年 / 5卷
关键词
artificial neural network; data-driven modeling; tribological properties; wear; fretting; WEAR; PREDICTION; FRICTION; BEHAVIOR; VALIDATION; SIMULATION; VARIABLES; CONTACT; SYSTEM;
D O I
10.3389/fmech.2019.00030
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
In the present paper, artificial neural networks (ANNs) are considered from a mathematical modeling point of view. A short introduction to feedforward neural networks is outlined, including multilayer perceptrons (MLPs) and radial basis function (RBF) networks. Examples of their applications in tribological studies are given, and important features of the data-driven modeling paradigm are discussed.
引用
收藏
页数:9
相关论文
共 50 条
  • [21] Springback Optimization for CNC Tube Bending Machine Based on an Artificial Neural Networks (ANNs)
    Kongnoo, Somchai
    Sonthipermpoon, Kawin
    Kielarova, Somlak Wannarumon
    [J]. FME TRANSACTIONS, 2023, 51 (03): : 405 - 414
  • [22] Modeling of solar energy potential in Souss-Massa area-Morocco, using intelligence Artificial Neural Networks (ANNs)
    Mensour, O. Nait
    El Ghazzani, B.
    Hlimi, B.
    Ihlal, A.
    [J]. MATERIALS & ENERGY I (2015) / MATERIALS & ENERGY II (2016), 2017, 139 : 778 - 784
  • [23] Paradigm shift from Artificial Neural Networks (ANNs) to deep Convolutional Neural Networks (DCNNs) in the field of medical image processing
    Abut, Serdar
    Okut, Hayrettin
    Kallail, K. James
    [J]. EXPERT SYSTEMS WITH APPLICATIONS, 2024, 244
  • [24] Thermodynamics-based Artificial Neural Networks for constitutive modeling
    Masi, Filippo
    Stefanou, Ioannis
    Vannucci, Paolo
    Maffi-Berthier, Victor
    [J]. JOURNAL OF THE MECHANICS AND PHYSICS OF SOLIDS, 2021, 147
  • [25] Modeling asphalt pavement condition using artificial neural networks
    Vyas, Vidhi
    Singh, Ajit Pratap
    [J]. MATERIALS TODAY-PROCEEDINGS, 2022, 62 : 1671 - 1676
  • [26] Modeling and Interpretation of Pressuremeter Test Results with Artificial Neural Networks
    Emami M.
    Yasrobi S.S.
    [J]. Emami, M. (r_m_emami@yahoo.com), 1600, Kluwer Academic Publishers (32): : 375 - 389
  • [27] Ecosystem modeling using artificial neural networks: An archaeological tool
    Susana Burry, Lidia
    Marconetto, Bernarda
    Somoza, Mariano
    Palacio, Patricia
    Trivi, Matilde
    D'Antoni, Hector
    [J]. JOURNAL OF ARCHAEOLOGICAL SCIENCE-REPORTS, 2018, 18 : 739 - 746
  • [28] ARTIFICIAL NEURAL NETWORKS - AN EMERGING NEW TECHNIQUE
    YOON, Y
    PETERSON, L
    [J]. DATA BASE, 1992, 23 (01): : 55 - 57
  • [29] MODELING PHASE-CHANGE MATERIALS HEAT CAPACITY USING ARTIFICIAL NEURAL NETWORKS
    Delcroix, B.
    Kummert, M.
    Daoud, A.
    [J]. HEAT TRANSFER RESEARCH, 2018, 49 (07) : 617 - 631
  • [30] Glass-Reinforced Aluminum Matrix Composite: Synthesizes, Analysis, and Hardness and Porosity Modeling Using Artificial Neural Networks
    Abu Sleem, Ahmad
    Arafeh, Mazen
    Al-Shihabi, Sameh
    Obiedat, Ruba
    Al-Zain, Yazan
    [J]. JORDAN JOURNAL OF MECHANICAL AND INDUSTRIAL ENGINEERING, 2024, 18 (03) : 509 - 519