The divisible sandpile with heavy-tailed variables

被引:3
|
作者
Cipriani, Alessandra [1 ]
Hazra, Rajat Subhra [2 ]
Ruszel, Wioletta M. [3 ]
机构
[1] Univ Bath, Bath, Avon, England
[2] Indian Stat Inst, Kolkata, India
[3] Delft Univ Technol, Delft, Netherlands
基金
英国工程与自然科学研究理事会;
关键词
Divisible sandpile; Heavy-tailed variables; alpha-stable random distribution; ENTROPIC REPULSION; BANACH-SPACES; MODELS;
D O I
10.1016/j.spa.2017.10.013
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
This work deals with the divisible sandpile model when an initial configuration sampled from a heavy-tailed distribution. Extending results of Levine et al. (2015) and Cipriani et al. (2016) we determine sufficient conditions for stabilization and non-stabilization on infinite graphs. We determine furthermore that the scaling limit of the odometer on the torus is an alpha-stable random distribution. (C) 2017 Elsevier B.V. All rights reserved.
引用
收藏
页码:3054 / 3081
页数:28
相关论文
共 50 条
  • [1] Minimum of heavy-tailed random variables is not heavy tailed
    Leipus, Remigijus
    Siaulys, Jonas
    Konstantinides, Dimitrios
    AIMS MATHEMATICS, 2023, 8 (06): : 13066 - 13072
  • [2] Singularity Analysis for Heavy-Tailed Random Variables
    Ercolani, Nicholas M.
    Jansen, Sabine
    Ueltschi, Daniel
    JOURNAL OF THEORETICAL PROBABILITY, 2019, 32 (01) : 1 - 46
  • [3] Singularity Analysis for Heavy-Tailed Random Variables
    Nicholas M. Ercolani
    Sabine Jansen
    Daniel Ueltschi
    Journal of Theoretical Probability, 2019, 32 : 1 - 46
  • [4] Statistical inference in regression with heavy-tailed integrated variables
    Mittnik, S
    Paulauskas, V
    Rachev, ST
    MATHEMATICAL AND COMPUTER MODELLING, 2001, 34 (9-11) : 1145 - 1158
  • [5] Moderate Deviations for Random Sums of Heavy-Tailed Random Variables
    Fu Qing GAO School of Mathematics and Statistics
    ActaMathematicaSinica(EnglishSeries), 2007, 23 (08) : 1527 - 1536
  • [6] New scaling model for variables and increments with heavy-tailed distributions
    Riva, Monica
    Neuman, Shlomo P.
    Guadagnini, Alberto
    WATER RESOURCES RESEARCH, 2015, 51 (06) : 4623 - 4634
  • [7] On the random max-closure for heavy-tailed random variables
    Leipus, Remigijus
    Siaulys, Jonas
    LITHUANIAN MATHEMATICAL JOURNAL, 2017, 57 (02) : 208 - 221
  • [8] On the random max-closure for heavy-tailed random variables
    Remigijus Leipus
    Jonas Šiaulys
    Lithuanian Mathematical Journal, 2017, 57 : 208 - 221
  • [9] Tail behavior of the sums of dependent and heavy-tailed random variables
    Changjun Yu
    Yuebao Wang
    Dongya Cheng
    Journal of the Korean Statistical Society, 2015, 44 : 12 - 27
  • [10] Moderate Deviations for Random Sums of Heavy-Tailed Random Variables
    Fu Qing Gao
    Acta Mathematica Sinica, English Series, 2007, 23 : 1527 - 1536