Maximal inner spaces and Hankel operators on the Bergman space

被引:9
|
作者
Zhu, KH [1 ]
机构
[1] SUNY Albany, Dept Math & Stat, Albany, NY 12222 USA
基金
美国国家科学基金会;
关键词
D O I
10.1007/BF01195126
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The paper deals with two closely related questions about the Bergman space of the unit disk. First, we investigate a special class of invariant subspaces of the Bergman space, namely, invariant subspaces induced by certain Hankel operators. We show that such spaces always have the co-dimension 1 or 2 property; and we determine exactly when such a space has the co-dimension 1 property. Second, we introduce the notion of inner spaces in the Bergman space and give several characterizations of when an inner space is maximal.
引用
收藏
页码:371 / 387
页数:17
相关论文
共 50 条