Automated Localization and Segmentation of Vertebrae in the Micro-CT Images of Rabbit Fetuses using 3D Convolutional Neural Networks

被引:0
|
作者
Chen, Antong [1 ]
Gona, Saideep [2 ,7 ]
Xue, Dahai [3 ,7 ]
Shah, Tosha [4 ]
Gleason, Alexa [5 ]
Robinson, Barbara [6 ]
Mattson, Britta [6 ]
Hines, Catherine [5 ]
机构
[1] Merck & Co Inc, Image Data Analyt Data Sci & Sci Informat, West Point, PA 19486 USA
[2] Univ Chicago, Biol Sci Dept, Chicago, IL 60637 USA
[3] Regeneron Pharmaceut, Basking Ridge, NJ USA
[4] Merck & Co Inc, Image Data Analyt Data Sci & Sci Informat, Rahway, NJ 07065 USA
[5] Merck & Co Inc, Translat Biomarkers, West Point, PA USA
[6] Merck & Co Inc, SALAR, Dev & Reprod Toxicol, West Point, PA USA
[7] Merck & Co Inc, Rahway, NJ 07065 USA
来源
MEDICAL IMAGING 2021: IMAGE PROCESSING | 2021年 / 11596卷
关键词
Micro-CT; 3D convolutional neural networks; developmental and reproductive toxicology; segmentation;
D O I
10.1117/12.2581117
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
In the pharmaceutical industry, micro-CT images of Dutch-Belted rabbit fetuses have been used for the assessment of compound-induced skeletal abnormalities in developmental and reproductive toxicology (DART) studies. In the automated approach proposed to assess the morphology of each bone, localization and segmentation of each vertebral bone is a critical task. In this work, we are extending our previous work for the localization of cervical vertebrae to the entire spine following a multivariate regression framework based on a 3D convolutional neural network (CNN). We also introduce a multitasking 3D CNN for the segmentation of each vertebral bone, in which features at the most compact level are processed with two additional convolution layers with max pooling to generate features leading to a classification of whether the patch contains a complete vertebra or not. This multi-tasking mechanism allows us to ensure only complete pieces of vertebrae are segmented. Experimenting on 345 rabbit fetuses with 80/10/10 ratio for training/validation/testing, we were able to achieve successful localization on 94.3% of the cases (i.e. median bone-by-bone localization error under 5 voxels over the entire spine) and an average Dice similarity coefficient (DSC) of 0.80 between automated and ground truth segmentations on the testing set.
引用
收藏
页数:7
相关论文
共 50 条
  • [1] Localization and Labeling of Cervical Vertebral Bones in the Micro-CT Images of Rabbit Fetuses Using a 3D Deep Convolutional Neural Network
    Chen, Antong
    Xue, Dahai
    Shah, Tosha
    Hines, Catherine D. G.
    Gleason, Alexa
    Patel, Manishkumar
    Robinson, Barbara
    Mattson, Britta
    Dogdas, Belma
    MEDICAL IMAGING 2019: IMAGE PROCESSING, 2019, 10949
  • [2] Automated segmentation of the knee for age assessment in 3D MR images using convolutional neural networks
    Paul-Louis Pröve
    Eilin Jopp-van Well
    Ben Stanczus
    Michael M. Morlock
    Jochen Herrmann
    Michael Groth
    Dennis Säring
    Markus Auf der Mauer
    International Journal of Legal Medicine, 2019, 133 : 1191 - 1205
  • [3] Automated segmentation of the knee for age assessment in 3D MR images using convolutional neural networks
    Proeve, Paul-Louis
    Jopp-van Well, Eilin
    Stanczus, Ben
    Morlock, Michael M.
    Herrmann, Jochen
    Groth, Michael
    Saering, Dennis
    der Mauer, Markus Auf
    INTERNATIONAL JOURNAL OF LEGAL MEDICINE, 2019, 133 (04) : 1191 - 1205
  • [4] FULLY AUTOMATIC SEGMENTATION OF LUMBAR VERTEBRAE FROM CT IMAGES USING CASCADED 3D FULLY CONVOLUTIONAL NETWORKS
    Janssens, Rens
    Zeng, Guodong
    Zheng, Guoyan
    2018 IEEE 15TH INTERNATIONAL SYMPOSIUM ON BIOMEDICAL IMAGING (ISBI 2018), 2018, : 893 - 897
  • [5] Processing of micro-CT images of granodiorite rock samples using convolutional neural networks (CNN). Part III: Enhancement of Scanco micro-CT images of granodiorite rocks using a 3D convolutional neural network super-resolution algorithm
    Roslin, A.
    Lebedev, M.
    Mitchell, T. R.
    Onederra, I. A.
    Leonardi, C. R.
    MINERALS ENGINEERING, 2023, 195
  • [6] Automatic segmentation of 3D micro-CT coronary vascular images
    Lee, Jack
    Beighley, Patricia
    Ritman, Erik
    Smith, Nicolas
    MEDICAL IMAGE ANALYSIS, 2007, 11 (06) : 630 - 647
  • [7] Processing of micro-CT images of granodiorite rock samples using convolutional neural networks (CNN), Part II: Semantic segmentation using a 2.5D CNN
    Roslin, A.
    Marsh, M.
    Provencher, B.
    Mitchell, T. R.
    Onederra, I. A.
    Leonardi, C. R.
    MINERALS ENGINEERING, 2023, 195
  • [8] Automated Processing of Micro-CT Scans Using Descriptor-Based Registration of 3D Images
    Kaminski, Jakub
    Trzewiczek, Barlomiej
    Wronski, Sebastian
    Tarasiuk, Jacek
    ADVANCES IN SYSTEMS SCIENCE, ICSS 2016, 2017, 539 : 73 - 79
  • [9] Automated segmentation of wood fibres in micro-CT images of paper
    Sharma, Y.
    Phillion, A. B.
    Martinez, D. M.
    JOURNAL OF MICROSCOPY, 2015, 260 (03) : 400 - 410
  • [10] Acute ischemic stroke lesion segmentation in non-contrast CT images using 3D convolutional neural networks
    Dobshik, A. V.
    Verbitskiy, S. K.
    Pestunov, I. A.
    Sherman, K. M.
    Sinyavskiy, Yu. N.
    Tulupov, A. A.
    Berikov, V. B.
    COMPUTER OPTICS, 2023, 47 (05) : 770 - 777